
Efficient Pattern Matching With Flexible

Wildcard Gaps and One-off Constraint

Thesis submitted in partial fulfillment of the requirements for the award

of degree of

Master of Engineering

in

Computer Science and Engineering

Submitted By

Anu Dahiya

(Roll No. 801232004)

Under the supervision of:

Dr. Deepak Garg

Associate Professor, CSED

COMPUTER SCIENCE AND ENGINEERING DEPARTMENT

THAPAR UNIVERSITY

PATIALA – 147004

June 2014

i

ii

iii

ABSTRACT

Deoxyribonucleic acid (DNA) is the storehouse of all information and genetic

instructions used in the development and functioning of a cell. The amount of DNA

that is being extracted from the organism is increasing at a faster rate. With the

considerable increase in the amount of biosequence data, there is need to develop new

methods to extract knowledge from the data. Pattern matching is a basic operation in

finding knowledge from large amount of biosequence data. Finding patterns help in

analyzing the property of a sequence. Analyzing the DNA sequence can help in

identifying the genetic diseases.

Promoter and intron in a DNA sequence does not occur consecutively but with a gap

of 30-50 characters between them. So Pattern matching with wildcards is of great

significance in bioinformatics. This thesis focuses on the problem of maximal pattern

matching with flexible wildcard gaps and length constraints under the one-off

condition. The problem is to find the maximum number of occurrences of a pattern P

with user specified wildcard gap between every two consecutive letters of P in a

biological sequence S under the one-off condition and constraint on the overall length

of the matching occurrence. To obtain the optimal solution for this problem is

difficult. For this problem, no complete solution has been developed so far. All

algorithms are based on greedy approaches.

 In this work, different existing algorithms for solving the problem of maximal pattern

matching with flexible wildcard gaps and length constraints under the one-off

condition have been studied along with their merits and de-merits. These algorithms

are then compared on the basis of data structure used by them, technique incorporated

in the algorithm, time and space complexities.

A heuristic algorithm, MOGO, based on the Nettree data structure has been proposed

to solve this problem. Theoretical analysis and experimental results demonstrate that

this algorithm performs better than the existing algorithms in most of the cases when

tested on real world biological sequences.

iv

TABLE OF CONTENTS

Certificate .. i

Acknowledgement .. ii

Abstract .. iii

Table of Contents .. iv

List of Figures ... vii

List of Tables ... ix

1. Introduction .. 1

1.1 Pattern Matching .. 1

1.2 DNA ... 3

1.3 Pattern Matching in DNA Sequences ... 5

1.4 Significance of DNA Sequence Analysis ... 5

1.5 Pattern Matching with Wildcard Characters .. 6

1.6 Constraints .. 7

2. Literature Survey ... 9

2.1 Basic Concepts and Data Structures Used ... 9

 2.1.1 Bit Parallelism ... 9

v

 2.1.2 Trie .. 9

 2.1.3 Automata ... 10

 2.1.4 Suffix Tree ... 11

2.2 Different Matching Strategies .. 12

 2.2.1 Prefix Searching .. 13

 2.2.2 Suffix Searching .. 14

 2.2.3 Factor Searching .. 14

2.3 Variations in Traditional Pattern Matching Problem ... 15

 2.3.1 Fixed Wildcard Characters .. 15

 2.3.2 Variable Wildcard Gap .. 15

 2.3.3 One-off Condition ... 16

 2.3.4 Approximate Pattern Matching ... 18

2.4 Comparison of various algorithms involving one-off condition 18

3. Problem Statement... 20

2.1 Problem Definition ... 20

2.2 Gap Analysis .. 22

2.3 Proposed Objective .. 22

2.4 Methodology Used ... 23

vi

4. Algorithm .. 24

4.1 Data Structure ... 24

4.2 Algorithm Description .. 29

4.3 Complexity Analysis .. 32

4.4 An Illustration Example ... 32

5. Implementation and Experimental Results ... 35

5.1 Configuration and Architecture .. 35

5.2 Snapshots .. 36

5.3 Experimental Results .. 40

 5.3.1 Experiment on Real Data .. 40

 5.3.2 Experiment on Artificial Data ... 42

6. Conclusion and Future Scope ... 45

6.1 Conclusion .. 45

6.2 Future Scope ... 46

References ... 47

List of Publications .. 52

vii

LIST OF FIGURES

Figure 1.1 Structure of DNA .. 4

Figure 1.2 Central Paradigm of Bioinformatics .. 5

Figure 1.3 Example showing different cases of Pattern Matching 8

Figure 2.1 Trie for the set of strings, S={atatc, atcg, atcgac} 10

Figure 2.2 Deterministic Automata ... 10

Figure 2.3 Non-Deterministic Automata .. 11

Figure 2.4 Suffix tree for the string “banana”... 12

Figure 2.5 Categorization of searching approaches .. 13

Figure 4.1 Structure of Nettree Node .. 24

Figure 4.2 Structure of Nettree Level ... 25

Figure 4.3 Step-by-Step Creation of Nettree .. 27

Figure 4.4 Final Nettree .. 28

Figure 4.5 A Nettree ... 32

Figure 4.6 Nettree with min_occ and max_occ of each node 33

Figure 4.7 Removal of nodes from Nettree .. 34

Figure 4.8 Updated Nettree ... 34

Figure 5.1 CGI Architecture ... 35

viii

Figure 5.2 First Page ... 36

Figure 5.3 Input File containing the DNA sequence .. 37

Figure 5.4 Output when wrong pattern is entered by the user 37

Figure 5.5 Output when path of file is not given .. 38

Figure 5.6 Output when invalid range of global length constraints is provided 38

Figure 5.7 Output without one-off condition .. 39

Figure 5.8 Output with one-off condition ... 39

Figure 5.9 Effect of the length of pattern on the accuracy of MOGO… 43

Figure 5.10 Effect of maximum wildcard gap on the accuracy of MOGO 43

ix

LIST OF TABLES

Table 2.1 Comparison of Algorithms ... 19

Table 3.1 Different alignments of Pattern with Sequence in Example 3 21

Table 4.1 An Instance of Number_levels Array ... 33

Table 5.1 Biological Sequences .. 40

Table 5.2 Patterns with wildcard gaps .. 40

Table 5.3 Global Length Constraints .. 41

Table 5.4 Experimental Results .. 41

1

CHAPTER – 1

INTRODUCTION

‘

1.1 Pattern Matching

In Computer Science, Pattern matching refers to the method of locating the

occurrences of the pattern in a sequence. Output of pattern matching is the total

number of occurrences of pattern P in a sequence S and all possible locations of a

pattern P within a sequence S [1].

With time, new problems related to pattern matching are being defined. To deal with

these problems in an efficient manner, several new data structures are being

introduced and existing data structures are modified. Pattern matching algorithms can

be distinguished from one another on the basis of the method used for searching the

occurrence and the method used to achieve optimal time [2].

There are two techniques of Pattern Matching [3]:

 Single pattern Matching – A single pattern is searched for presence in a

sequence.

 Multi pattern Matching – More than one patterns are searched simultaneously

for presence in a sequence. It has high performance and usability than single

pattern matching.

Pattern matching algorithms can be broadly classified into two main categories [3]:

 Exact pattern matching – It refers to finding the exact occurrence of the given

pattern in the sequence.

 Approximate pattern matching – Approximate pattern matching allows for

some errors or mismatches of some characters while finding the occurrence of

the given pattern in a sequence [4]. Some of the main approaches used in

approximate pattern matching algorithms are - Dynamic programming

approach, Bit parallelism approach, Automata approach, Filtering and

Automation Algorithms.

2

There are two steps involved in pattern matching algorithms [3]:

 Preprocessing phase – In this phase, the information is being collected for the

purpose of optimization.

 Processing Phase – The information collected in preprocessing phase is being

used to find the occurrences of the pattern in a sequence.

Pattern matching algorithms can be online or offline. In online algorithms, only

pattern can be preprocessed while sequence cannot be preprocessed whereas in offline

algorithms, both sequence and pattern can be preprocessed.

Some algorithms start searching for the pattern from the left side of the sequence and

some from the right side of the sequence. Those which start from the left side are

known as left-optimized algorithms and the ones that start from the right side are

known as right optimized algorithms [3].

Each pattern matching algorithm has its own merits and demerits depending on the

length of the pattern, length of the sequence and the technique used in that particular

algorithm.

Application of Pattern Matching Algorithms includes [5]:

 Parsers

 Text processing

 Speech reorganization

 Spam filters

 Linguistic translation

 Digital libraries

 Screen scrapers

 Data compression

 Word processors

 Network intrusion detection

 Web search engines

 Information retrieval

 Natural language processing

 Computational molecular biology

3

 Feature detection in digitized images

 Computer virus detection

1.2 DNA

Deoxyribonucleic acid (DNA) is the storehouse of all information and genetic

instructions used in the development and functioning of a cell. Thus, DNA sequences

hold the code of life for every living organism. This information is normally encoded

by the specific sequence of nucleotide bases i.e. adenine, guanine, cytosine and

thymine (A, G, C, T) [6]. It is the linear order in which these bases are arranged that

determines the properties of the cell.

DNA has “double helix” structure made up from two long interwoven strands. Each

strand is made up of molecules known as nucleotides [7].

A nucleotide is made up of:

 A phosphate group

 A sugar called deoxyribose

 A base, which is one of the following:

 A - Adenine,

 T - Thymine,

 C - Cytosine,

 G - Guanine

The first two parts are identical in all nucleotides and form the backbone of the DNA

strand.

There are five carbon atoms in the sugar molecule. These five carbon atoms are

represented as C1’, C2’, C3’, C4’, C5’. With 1’ carbon, base is attached and with 3’

and 5’ carbons phosphate groups are attached. Sugar molecule is asymmetric and due

to this asymmetry, it imposes an orientation on the backbone. The two ends that

results due to this orientation are known as 3’ end and 5’end respectively [7].

4

DNA is double stranded because of base pair complementarily [7]. The two

complementary base pairs are:

 A and T

 C and G

If one member of a pair is on one strand of DNA and the second member is on

another strand, and both of them are aligned with each other, then the two can

hybridize via hydrogen bonds. Hydrogen bonds are nothing but a weak attractive

force between hydrogen and nitrogen or between hydrogen and oxygen. There are two

hydrogen bonds between A and T as compared to C and G which is having three

bonds between them, thus making C-G bonds stronger than A-T bonds [7]. The

structure of the DNA is shown in Figure 1.1 [8].

The unit that is used to measure the length of the DNA is base pairs (bp).

Figure 1.1: Structure of DNA

Sequences are presented by reading from left to right in 5’ to 3’ direction [9].

Every gene has coding region and non-coding region. Coding- region is known as

exon and non- coding region is known as intron. In DNA, promoter region determines

the initiation of the transcription process of a gene [8].

5

1.3 Pattern Matching in DNA Sequences

The amount of DNA that is being extracted from the organism is increasing at a faster

rate. Because of the considerable increase in the amount of biosequence data, there is

need to develop new methods to extract knowledge from the data. Pattern matching is

a basic operation in finding knowledge from large amount of biosequence data.

Pattern matching is used in computational biology to analyze the data related to

protein and gene [10]. A particular pattern is searched for in a given DNA sequence.

In any biological research, the most important step is searching for patterns in

database. One example of such a database is GENBANK. The human DNA contains

around 3Gbp [11]. The amount of DNA data being collected from an organism is

increasing day by day in a non linear manner. With this increase in data, it is

becoming difficult to obtain essential information from the DNA sequences. Thus

efficient and fast pattern matching techniques are needed [3].

1.4 Significance of DNA Sequence Analysis

Figure 1.2: Central Paradigm of Bioinformatics

Genetic Information

Molecular Structure

Biochemical Functions

Symptoms

6

Genetic information is represented as one-dimensional but functionality of genes

depend on the three dimensional structure. Structure determines biochemical

characteristics of cell. By knowing the biochemical functions, symptoms of each cell

can be easily known. This is shown in a flowchart in Figure 1.2 [12].

DNA is an important part of living things and thus knowledge of DNA sequences

plays an important role in biological research. In medicine, knowledge of DNA can be

used to diagnose the genetic diseases and then suggest treatment for the same [9].

1.5 Pattern Matching with Wildcard Characters

Wildcard refers to the special character that can be replaced by zero or more

characters in a string. Wildcards are mostly used in regular expressions, SQL queries,

Dictionary navigation etc. [13]. Pattern matching with wildcard gaps plays a

significant role in biological sequence analysis in computational biology. Apart from

bioinformatics [14], other applications of pattern matching with wildcard include

information retrieval [15], dictionary query [16] etc.

The two examples in bioinformatics where pattern matching with wildcard gaps plays

an important role are as follows:

1. It is known that in a DNA sequence, common promoter TATA box appears

after the CAAT box at a gap of 30-50 characters [17, 18]. Hence pattern

matching with wildcard gaps plays a vital role in analyzing such biological

sequences.

2. To the specific locations of DNA, a protein is bind that regulates the

transcription of the DNA into RNA. This protein is known as transcription

factor. There are many transcription factors and can be classified into different

families. The families are categorized on the basis of strings containing

wildcards [19]. For instance, a transcription factor named Zinc Finger is

having the signature:

CYS¢¢CYS¢¢¢¢¢¢¢¢¢¢¢¢¢HIS¢¢HIS

where CYS and HIS are the amino acids cysteine and histidine respectively.

7

1.6 Constraints

Various constraints that can be related to the pattern matching with wildcard gaps are

as follows:

 Fixed wildcard gap - Fixed wildcard gap mean that the number of wildcard

characters that can occur in pattern are fixed. While matching with a string,

these wildcard characters can be replaced by any character from the alphabet

under consideration [20].

 Variable wildcard gap – Variable wildcard gap means that the number of

wildcard characters between two consecutive characters can be a range rather

than a fixed number [20].

 Local length constraints - It is the constraint in the form of the range of length

of wildcard characters between each two consecutive letters of the pattern.

This gives flexibility to control queries [20].

 Global length constraints - Global length constraint is the constraint on the

overall length of each matching substring of sequence with the given pattern

[20].

 One-off condition- One-off condition means every positional index of a

character in a sequence can be used at most once while matching with the

given pattern [20]. Applying One-off condition makes the solution to satisfy

Apriori property and also removes useless information.

More constraints lead to difficulty in achieving optimal solutions.

An example depicting variations of pattern matching is shown in Figure 1.3.

Figure 1.3a shows the case when there are no wildcard characters in the pattern. In

this case jump from one character to the next character is consecutive while searching

for the match.

Figure 1.3b shows the case when there is fixed wildcard gap in the pattern i.e. number

of wildcard characters are fixed. In this case there is constant jump from one character

to the next character while searching for the match.

Figure 1.3c shows the case when there is variable wildcard gap in the pattern i.e.

number of wildcard characters between two consecutive characters of the pattern is a

8

range. In this case there is flexible jump from one character to the next character

depending on the range while searching for the match.

Figure 1.3: Example showing different cases of pattern matching

9

CHAPTER – 2

LITERATURE SURVEY

There exist a numerous algorithms for pattern matching problems. All of these

algorithms differ in the way they search for the pattern, the data structure used by

them and time taken by them to give the result.

2.1 Basic Concepts and Data Structure Used

2.1.1 Bit Parallelism

The concept of bit parallelism utilizes the ability of parallelism of bit operations in a

computer word. Multiple values can be accommodated in a single computer word and

all can be updated in just a single step. By doing that, the number of operations

performed by an algorithm can be substantially reduced by factor of n where n being

the number of bits in a computer word [21].

2.1.2 Trie

A tree consists of nodes connected to each other via unidirectional links [21]. Node

from where the link starts is known as parent node and the node where it ends is

known as the child node. Node not having any parent is known as the root node and

nodes not having any child are known as the leaf node. If we attach labels to all the

links present in the tree, the tree is known as labeled rooted tree. These labels are from

a particular alphabet ∑, definition of which varies depending on the

problem/application.

If we associate this labeled rooted tree to a set of strings, it is known as trie. Structure

of trie is shown in Figure 2.1.

10

Figure 2.1 Trie for the set of strings, S= {atatc, atcg, atcgac}

2.1.3 Automata

Finite automata can be defined as the machine that captures all the possible states and

transitions while processing the input symbols.

Depending on the fact whether a machine can have only one state at a particular time

or can exist in multiple states at the same time, it can be categorized into deterministic

finite automata and non-deterministic automata respectively [22].

If all the transitions are properly labeled from the set of alphabet ∑, automata can

recognize strings that label path from the initial state to the final state of automata

[21].

Example of DFA and NFA has been shown in Figure 2.2 and Figure 2.3 respectively

to clearly distinguish them.

Figure 2.2: Deterministic Automata

11

Figure 2.3 Non-Deterministic Automata

In both the figures, 0 is the start state and states with double circle are final states.

Clearly Figure 2.2 is deterministic automata as for a particular character no state is

leading to multiple states. Similarly Figure 2.3 is non-deterministic automata as

character ‘t’ from state 0 is leading to two states – 2 and 6.

Further automata can be cyclic or acyclic in nature.

2.1.4 Suffix Tree

It is similar to trie data structure. It stores all the suffixes of a given string [23]. It is a

rooted directed tree with the following properties [24]:

 Number of leaves is equal to the length of the given string.

 Each edge is labeled. Label must be a substring of the given string.

 All nodes except root node and leaves should have at least two children.

 Edges coming out from the same node must not have label beginning with the

same character.

 If we traverse the suffix tree from the root node to any leaf node,

concatenation of the labels of the edges in the path of traversal represents the

suffix of the given string.

12

Suffix tree is built by considering all the possible suffixes of the string as individual

words and building a compressed trie for these words.

Example of suffix tree for the string “banana” is shown in Figure 2.4. All the suffixes

for the string “banana” are – ‘banana’, ‘anana’, ‘nana’, ‘ana’, ‘na’, ‘a’ and ‘’.

Figure 2.4: Suffix tree for the string “banana”

2.2 Different Matching Strategies

There are mainly three different ways of searching for pattern in a text. Pattern is

searched for in a given string using a sliding window. Size of the window is

equivalent to the size of the pattern. Direction of movement of a window in a string is

from left to right. Pattern is matched inside a window. Different Approaches along

with the algorithms that use that particular approach are shown in Figure 2.5 [21].

13

Figure 2.5: Categorization of Searching Approaches

2.2.1 Prefix-based Approach

In prefix-based approach forward search is done to find the longest suffix of the

window that is also the prefix of the pattern [21]. There are three algorithms that fall

under this category: KMP algorithm, Shift-And algorithm and Shift-or Algorithm.

KMP algorithm [25] – It uses deterministic finite automata. It updates the longest

prefix of the pattern that matches the suffix of the string in window after each

character read.

Shift-and algorithm [4] and Shift-or algorithm [26] – These algorithms use non-

deterministic finite automata and works on the bit – parallel technique. All the

possible prefixes of the pattern that can match all the possible suffixes of the string in

window are being maintained in a set and updated after each character read.

14

2.2.2 Suffix-based Approach

In suffix-based approach, backward search is done to find the longest suffix of the

window that is also the suffix of the pattern [21]. By doing this, some characters can

be avoided from being read, thus improving the performance. The algorithms that use

this approach are Boyer-Moore algorithm and Horspool algorithm.

Boyer-Moore (BM) algorithm [27] – It involves computing the three functions. These

three functions are used for shifting i.e. to determine the safe jumping distance.

Horspool algorithm [28] – The complexity of BM algorithm was in computing the

three functions. Horspool changed the third function such that it is more efficient to

compute it.

2.2.3 Factor-based Approach

In Factor-based approach, backward search is done to find the longest suffix of the

window that is also a factor of the pattern [21]. The complexity of this approach lies

in identifying the factors of the pattern. The algorithms that use this approach are

Backward Dawg matching algorithm, Backward Non-deterministic Dawg matching

algorithm and Backward oracle matching algorithm.

Backward Dawg Matching (BDM) algorithm [29] – In order to search the factors of

the pattern, it uses suffix automation.

Backward Non-deterministic Dawg Matching (BNDM) algorithm [30] - In order to

search the factors of the pattern, it uses bit parallelism. BNDM is memory efficient

than BDM. It is basically simulation of non deterministic automation representing

suffixes of reverse pattern.

Backward Oracle Matching (BOM) algorithm [31] – It is a slight modification of

factor based approach. The complexity of the algorithm BDM lies in building the

suffix automation. The algorithm BOM uses the automation named factor oracle

which is much simpler as compared to suffix automation.

15

2.3 Variations in Traditional Pattern Matching Problem

2.3.1 Fixed Wildcard Characters

The concept of pattern matching with wildcard was first introduced in [32] by Fisher

and Paterson in which the location of wildcard characters in a pattern is fixed. The

algorithm given by Fisher and Paterson was deterministic in nature.

Muthukrishnan and Palem were able to slightly improve the algorithm given by Fisher

and Paterson by reducing the constant factor [33].

Time efficiency of the matching result of the algorithm by Fisher and Paterson was

improved by Indyk who gave randomized algorithm involving convolutions [34]. A

new randomized technique was given by Indyk to calculate the Boolean products.

Time complexity of this algorithm is O (n log n) where n is the length of the string.

Kalai [35] slightly improved the time efficiency of the matching result of the

algorithm given by Indyk. Algorithm given by Kalai is also a randomized algorithm

and involves a single convolution. Time complexity of this algorithm is O (n log m)

where n is the length of the string and m is the length of the pattern.

Cole et al. [17] put a restriction on the overall number of wildcard that can occur in a

pattern while allowing for any number of wildcard characters in between the two

consecutive characters of the pattern.

2.3.2 Variable Wildcard Gap

In [6, 17], user was able to specify the range of wildcard gap between consecutive

characters of the pattern, but that range was fixed for all the consecutive characters of

pattern. E.g. A(0,3)T(0,3)A(0,3)C has fixed gap range of (0,3). In [17], Manber and

Baeza-Yates made use of suffix array data structure to solve the problem, thus

reducing it to the two-dimensional orthogonal range queries problem.

Navarro and Raffinot [36] eliminated the restriction of fixed user specified range, thus

allowing variable user specified gap range. E.g. A(0,1)T(0,3)A was allowed in [36].

Navarro and Raffinot proposed two algorithms. The algorithms are not based on

16

regular expression technique, thus making them a bit faster. The first algorithm reads

each character of string exactly once. The second algorithm can skip some characters

of string from being read thus making it efficient, but in some cases, it can end up

reading the characters of strings more than once. So depending on the particular case,

one of the two algorithms is run.

Min et al. [37] deals with the same problem definition as in [36] with global length

constraint added. They proposed the algorithm PAIG. There are three variations of

this algorithm - PAIG(S), PAIG (RS) and PAIG (RST). PAIG(S) stands for PAIG

simple. The data structure being used in PAIG is simple look-up tables. PAIG (RS)

stands for PAIG reduced space. In PAIG (RS), memory sharing mechanism is used

which reduces the space complexity. PAIG (RST) stands for PAIG reduced space and

time. In PAIG (RST), an alternative data structure is being employed which reduces

both time and space complexity.

2.3.3 One-off Condition

In addition to the global constraint, the concept of one-off condition was taken into

consideration in some algorithms.

SAIL algorithm [20] – It consumes a lot of time for the large pattern length. Three

main steps involved in this algorithm are:

1. Location: It searches for the position of the last alphabet of Pattern in

Sequence by considering the global constraint.

2. Forward: This phase eliminates all those solutions that do not satisfy local

constraints and gives the underlying matching positions.

3. Backward: This phase selects one optimal solution out of all possible

solutions.

RSAIL algorithm [38] - Being a heuristic algorithm, SAIL has a problem of left-

optimization as it chooses the left-most letters. It may lose occurrences by getting

trapped in local optima. SAIL offers the completeness under a restriction that pattern

should not have recurring characters.

17

To eliminate this problem with SAIL algorithm, RSAIL was proposed. The idea

behind RSAIL is as follows:

1. If pattern is not having recurring tail characters, SAIL is called.

2. If pattern is having recurring tail characters, convert it into a pattern having no

recurring tail characters and call SAIL.

Time complexity of RSAIL is same as that of SAIL.

BPBM algorithm [39] - It is based on bit-parallel technology. Two nondeterministic

finite state automations (NFAs) are used. One is for identifying all of the pattern

suffixes, and another one is used to fasten the scanning process by eliminating useless

sequences.

PST algorithm [23] - Yingling LiU et al. proposed PST algorithm. PST (parallel

suffix tree) algorithm is based on multiple suffix trees.

The algorithm steps are given as:

Step1: Sequence S is divided into K parts by the cutting process;

Step2: Suffix tree is constructed for each part;

Step3: Multiple suffix trees are processed in parallel in order to get the matching

locations for the pattern.

PMW algorithm [40] - Jipeng Qiang et al. proposed an algorithm PMW. This

algorithm relies on the reversed Aho-Corasick automation for matching the sub-

patterns. Horspool algorithm is used to fasten the scanning process by eliminating

useless sequences. For each sub-pattern, an optimal occurrence is chosen. This

algorithm is left-optimized.

HSO algorithm [41] - Wu Y et al. proposed a new data structure Nettree [42]. When

global length constraints are not considered, PAIG is inefficient because it

recalculates some local constraints. So a new data structure namely, Nettree was

introduced and a heuristic algorithm HSO based on this data structure was proposed.

WOW algorithm [43] – Guo et al. introduced a new data structure named WON-Net

and proposed a heuristic algorithm WOW based on this data structure. Three

strategies are mentioned- LMO (Left Most Optimum), RMO (Right Most Optimum)

18

and CMP (Centralization Measure Pruning). One of the three strategies is used

depending on the calculation of some parameter.

2.3.4 Approximation Pattern Matching

SAIL- Approx Algorithm [44] - The algorithm SAIL was extended in [44] to allow

for some errors i.e. approximate pattern matching. The concept of dynamic

programming is being applied in this algorithm.

2.4 Comparison of Various Algorithms Involving One-off Condition

Various algorithms to solve the problem of maximal pattern matching with length

constraints and one-off condition have been compared in Table 1.1 on the basis of

data structure, time and space complexities.

Meaning of various symbols used in the comparison table is as follows:

n – Length of the sequence

m – Length of the pattern

f - Frequency of occurrence of pattern’s last character in the sequence

W - Maximum gap between consecutive letters of the pattern

l – Maximum allowed length of the occurrence (Global Length Constraint)

c - Number of parts into which sequence is divided

num – total number of occurrences of the pattern in a sequence

α – Total number of occurrences of sub patterns in a sequence

A – Sum of lower limits of gap range

B - Sum of upper limits of gap range

s – Number of sub patterns in a pattern

L – Number of characters in the last sub pattern of the pattern

B/w – Number of machine words to store each bit mask

19

Table 2.1: Comparison of Algorithms

Algorithm Data Structure Time Complexity Space Complexity

SAIL Search Table O(n+flmW) O(lm)

RSAIL Search Table O(n + flmW) O(lm)

PST Suffix Tree O(n+m+num+n/c) O(2n/c)

BPBM
Non-deterministic

Finite automata

O((Bm+n+f(l+s −

1))(B/w))

O((m+L+2s + 4) (⌊

B/w⌋))

PMW
Aho-Corasick

Automation
O(m+n+ f(l+α)) O(m+A)

HSO Nettree O(Wn(n+m
2
)) O(Wmn)

WOW WON-Net

O(Wmn+mn
2
) by

LMO/RMO

O(Wmn+mn
3
) by

CMP

O(mn)

20

CHAPTER – 3

PROBLEM STATEMENT

3.1 Problem Definition

Given a biological sequence S, a pattern P along with user defined local and global

constraints, our goal is to find the maximum number of substrings of sequence S that

matches the pattern P satisfying the local and global constraints under the one-off

condition.

Definition 1: A biological sequence S is defined as

S= s0s1s2…si…sn-1

where n is length of the sequence S and si ϵ {a, t, c, g} ∀ i where 0 ≤ i < n.

Example 1: A sequence S = aaattcgatgggcat is a biological sequence with length, n =

15.

Definition 2: A pattern P is defined as

P = p0 [l0 , u0] p1[l1 , u1] p2[l2 , u2]…[lj-1 , uj-1] pj[lj , uj]…[lm-2 , um-2] pm-1

where m is length of the pattern P without wildcards and pi ε {a, t, c, g} 0 ≤ j < m.

Here [lj , uj] is the range of wildcard gap allowed between the pattern characters pj and

pj+1. lj depicts the lower limit on the number of wildcard characters and uj depicts the

upper limit on the number of wildcard characters. This wildcard gap specified

between every two consecutive characters of P is called local constraint.

Example 2: P = a[0,3]t is a pattern with length i.e. m = 2. Here between the characters

‘a’ and ‘ t’, 0 to 3 wildcard characters are allowed.

Definition 3: Global length constraint is defined as the constraint on the overall length

of the substring of the sequence that matches the pattern. It is defined as [min, max].

‘min’ and ‘max’ depicts the minimum and maximum allowable overall length of the

substring of the sequence that matches the pattern respectively.

21

Definition 4: m and n being the length of the pattern and the sequence respectively, if

there exists positional indices o0o1o2…om-1 in a sequence S= s0s1s2…sn-1 such that

characters against those positional indices matches the characters of the pattern P = p0

[l0 , u0] p1[l1 , u1] p2[l2 , u2] ...[lm-2 , um-2] pm-1, i.e.

1-m i 0 wherei p s ioi

then (o0o1o2… om-1) is called an occurrence of a pattern in a sequence.

Example 3: Suppose sequence S = atataaa and pattern P = a[0,3]t[0,5]a. All the

possible alignments of pattern P with sequence S satisfying the local constraints are

given in Table 3.1.

Table 3.1: Different Alignments of Pattern with Sequence in Example 3

 0 1 2 3 4 5 6

S a t a t a a a

P a t a (0,1,2)

P a t - - a (0,1,4)

P a t - - - a (0,1,5)

P a t - - - - a (0,1,6)

P a - - t a (0,3,4)

P a - - t - a (0,3,5)

P a - - t - - a (0,3,6)

P a t a (2,3,4)

P a t - a (2,3,5)

P a t - - a (2,3,6)

So there are total of 10 possible occurrences of pattern P in sequence S : {(0,1,2),

(0,1,4), (0,1,5), (0,1,6), (0,3,4), (0,3,5), (0,3,6), (2,3,4), (2,3,5), (2,3,6)}

Example 4: Suppose in example 3, global length constraint [3, 5] is given. In this

case, we are left with only six possible occurrences- {(0,1,2), (0,1,4), (0,3,4), (2,3,4),

(2,3,5),(2,3,6)} as the occurrences (0,1,5), (0,3,5) are having length 6 and the

occurrences (0,1,6), (0,3,6) are having length 7 whereas the maximum possible length

allowed is 5.

22

Definition 5: If every positional index of a character in a sequence can be used at most

once while matching with a pattern, then such a set of occurrences is said to follow

the one-off condition. The solution {occ1, occ2…occi} is said to follow the one- off

condition if and only if

 = occ …occ occ i21

 where i is the total number of occurrences in the solution.

Example 5: After applying the one-off condition in example 4, the possible solutions

are: {(0,1,2)}, {(0,3,4)}, {(2,3,4)}, {(0,1,4), (2,3,5)}, {(0,1,4), (2,3,6)} . Since our

problem is to find the maximum number of possible occurrences, we should get as a

solution either {(0,1,4), (2,3,5)} or {(0,1,4), (2,3,6)} as both solutions contain 2

occurrences whereas rest of the possible solutions contain only single occurrence.

3.2 Gap Analysis

For the problem stated in above section, there is no complete solution developed so

far. All existing solutions dealing with this problem are based on greedy matching

strategies. Since this problem is computationally infeasible, it is difficult to develop

complete matching strategies. The problem of maximal pattern matching with flexible

wildcard gaps and length constraints under the one-off condition belongs to the

category of optimization problem. So focus is to improve the matching efficiency as

well as the quality of solutions.

3.3 Proposed Objective

The main objectives to address the above stated problem are as follows:

 To study the various data structures used in pattern matching.

 To analyze and compare different techniques used in existing algorithms

designed for the above stated problem.

 To propose a new algorithm for the problem of maximal pattern matching with

flexible wildcard gaps and length constraints under the one-off condition.

 To validate the new algorithm on biological data.

23

3.4 Methodology Used

To achieve the objectives stated in the above section, following methodology has

been used:

 Compare the existing algorithms for the problem on the basis of data structure,

approach, and time and space complexities.

 Choose a particular data structure and propose a new technique based on the

data structure chosen.

 Implement the new algorithm for maximal pattern matching with flexible

wildcard gaps and length constraints under the one-off condition.

 Validate the algorithm on real world biological data

 Compare the results of new algorithm with the results obtained from the

existing algorithms on the same dataset.

24

CHAPTER – 4

ALGORITHM

4.1 Data Structure

Proposed algorithm is based on the Nettree data structure [42]. Nettree data structure

is non-linear. Nettree is graph cum tree with one or more roots. Also it is acyclic in

nature. Nodes can have zero or more parents except those at the root level. Similarly

nodes can have zero or more children except those at the leaf level.

Structure of Nettree node is shown in Figure 4.1.

data

next

degree_parents

degree_children

parents

children

num_root_paths

Figure 4.1: Structure of Nettree Node

There are seven fields in the structure of Nettree nodes:

 data contains the position of the character in the sequence.

 next is the pointer that points to the immediate next node of the node.

 degree_parents represents the number of parents of the node.

 degree_children represents the number of children of the node.

 parents is a pointer array that contain pointers to all the parents of the node.

This array is of size ‘degree_parents’.

 children is a pointer array that contain pointers to all the children of the node.

This array is of size ‘degree_children’.

25

 num_root_paths represent the total number of paths from this node to the root

level nodes.

Structure of Nettree level is shown in Figure 4.2. Total number of levels in Nettree is

equal to total number of subpatterns in a given pattern. Here subpattern refers to the

subpatterns that are separated by wildcard gaps in a pattern. For instance, if pattern is

a[0,3]t[2,3]c, then there are three subpatterns of this pattern i.e. ‘a’, ‘t’ and ‘c’. There

can be any number of nodes at each level of Nettree depending on the sequence and

pattern. The very first level is known as root level and the last level is known as leaf

level. The concept of roots and leafs is similar to that of a tree.

Tail

Head

Figure 4.2: Structure of Nettree Level

There are two members in Nettree Level:

 Head- First node of the level is pointed by this pointer.

 Tail – Last node of the level is pointed by this pointer.

From one particular node at leaf level to a particular node at root level, there can be

multiple paths.

Num_root_paths field of a Nettree node contains number of all possible paths from

that node to the nodes at root level. In order to calculate num_root_paths, we start

from the root level. For all the nodes at root level, value of num_root_paths is equal to

one. For all other levels, value of num_root_paths is equal to the sum of

num_root_paths of all the parents of that node.

If we will sum the num_root_paths of all the nodes at leaf level, we will get the total

number of possible paths we can get by traversing from leaf level to root level in

Nettree.

Total number of possible paths depicts the total number of occurrences of the pattern

in a sequence.

26

While creating Nettree, local constraints are taken care of i.e. the occurrences that we

get after traversing Nettree satisfies the local constraints. However, occurrences

outputted by traversing Nettree do not satisfy global constraints and the one-off

condition. It just provides the solution for the problem of pattern matching with

independent wildcard gaps.

If we traverse the Nettree from root to leaf level, we get position of all occurrences of

the pattern in a sequence.

Nettree is being created according to the sequence S and Pattern P. Sequence S is

scanned from left to right. Nodes and relation between nodes will be created

according to the following rules:

Rule 1. Creation of nodes of root level

If si = p0, create and add node to the tail of the level one. In case it is the first node of

the level, make head point to this node.

Rule 2. Creation of nodes other than root level

If si = pj where j != 0 and the distance between i
th

 and the j
th

 level nodes is in

accordance to local constraints, create and add node to the tail of the j + 1
th

 level.

Rule 3. Creating relation between nodes of different levels

If the distance between the node created at a level and the nodes at one level up

satisfies the local constraints, create a parent-child relation between nodes.

Example:

Let sequence be atataaa and pattern be a[0,3]t[0,5]a

Step by step construction of Nettree for this problem is shown in Figure 4.3. Final

Nettree created is shown in Figure 4.4.

27

 a) b) c)

d) e) f)

Figure 4.3: Step-by-Step Creation of Nettree

28

Figure 4.4: Final Nettree

On traversing this Nettree, from the leaf level up to the root level, we get all the

possible paths.

In this example, total number of paths=10

And those paths are:

0 1 2 2 3 4 0 3 4 0 1 4 2 3 5 0 3 5 0 1 5 2 3 6 0 3 6 0 1 6

Complexity

Time and space complexity of creating Nettree data structure according to the given

sequence and pattern is O(W*m*n) and O(W*m*n) where m is the length of the

pattern, n is the length of the sequence and W is the maximum gap between

consecutive letters of the pattern. Maximum depth of Nettree is m. Also there cannot

be more than n nodes at one level as length of sequence is n. Since maximal gap is W,

so for each node, there can be maximum of W parents possible i.e. next W positions

in a sequence. Hence time and space complexity of Nettree is O(W*m*n) and

O(W*m*n) respectively.

29

4.2 Algorithm Description

Definition 6: number_levels[node.data] contains number of different levels at which

the positional index of node i.e. node.data is occurring.

Definition 7: Considering the paths from a particular node ‘nod’ to the root level, the

sum of the value of the number_levels of the nodes in the path that contains less

number of those nodes that occur at various different levels as compared to other

possible paths is called min_occurence of the node ‘nod’.

Property 1: For a node except those at the root level, the minimum value of the

min_occurence amongst all the parents of the node plus the number_levels value of

the node itself is known as min_occurrence of the node. For a node at root level,

min_occurence is the value of the number_levels of that particular node.

node.min_occurence = min(node.parents[i].min_occurrence) + number_levels[node.data]

where 1 ≤ i ≤ node.num_parents

Definition 8: Considering the paths from a particular node ‘nod’ to the root level, the

sum of the value of the number_levels of the nodes in the path that contains more

number of those nodes that occur at various different levels as compared to other

possible paths is called max_occurence of the node ‘nod’.

Property 2: For a node except those at the root level, the maximum value of the

max_occurence amongst all the parents of the node plus the number_levels value of

the node itself is known as max_occurrence of the node. For a node at root level,

max_occurence is the value of the number_levels of that particular node.

node.max_occurence = max(node.parents[i].max_occurrence) + number_levels[node.data]

where 1 ≤ i ≤ node.num_parents

Algorithm 1: MOGO

Input: Sequence S, pattern P and global constraint [min, max]

Output: Set of occurrences

30

Method:

1: Build the Nettree for the sequence S and the pattern P

2: Remove nodes having no possible path to any leaf from the Nettree

3: for l ϵ number of leaves at m
th

 level down to 1 step -1

4: for nod ϵ all nodes of the Nettree

5: Number_levels[nod.data]+=1

6: end for

7: for nod ϵ all nodes of the Nettree

8: calculate nod.min_occurrence and nod.max_occurrence

according to property 1 and property 2

9: end for

10: for nod ϵ all nodes of the Nettree

11: calculate the possible roots for nod satisfying global constraints

12: end for

13: if l satisfies global constraints

14: occ = OOCL(l, Nettree)

15: solution=solution U occ

16: Nettree = Nettree – occ

17: end if

18: end for

19: return solution

Algorithm 2: OOCL

Input: Nettree, Leaf l

Output: An occurrence containing Leaf l at last position

Method:

1: best_parent = l.parent[l.num_parents]

2: for r ϵ l.num_parents down to 1 step -1

3: if l.parent[r] satisfies global constraints

4: if l.parent[r].min_occurrence < best_parent.min_occurrence

5: best_parent = l.parent[r]

6: elif l.parent[r].min_occurrence == best_parent.min_occurrence

7: if l.parent[r].max_occurrence <=

best_parent.max_occurrence

31

8: best_parent = l.parent[r]

9: end if

10: end if

11: end if

12: end for

13: if best_parent.degree_parents != 0

14: OOCL(Nettree, best_parent)

15: end if

16: return occurrence

MOGO (Maximum Occurrences with Global length constraints and One-off

condition)

In line 1, Nettree is being created according to the sequence S and Pattern P. In line 2,

nodes that cannot be a part of any path from leaf to the root are being removed. For

the purpose of removing such nodes, each node of the constructed Nettree is

inspected. From lines 3 to 18, for each node - number_levels, possible roots satisfying

global constraint, min_occurrence and max_occurrence are being calculated and

OOCL is called iteratively for each leaf satisfying the global constraint in order to get

an optimal occurrence containing that leaf. In lines 4 to 6, nettree_levels is calculated.

In lines 7 to 9, min_occurrences and max_occurrences for each node is calculated. In

lines 10 to 12, for all nodes, all the possible root nodes satisfying the global

constraints that can be reached from node in consideration are being calculated. In

line 13, node is checked whether it is satisfying global constraints. If it satisfies global

constraints, in line 14 the algorithm OOCL is called for that node.

OOCL (Optimal Occurrences Containing Leaf)

This algorithm works in a recursive manner by finding the best parent of the node for

which it is called till it reaches the root level. It chooses the parent having minimum

value of min_occurrence as the best parent. In case of clash of the minimum value of

min_occurrence, it chooses the one having the minimum value of max_occurrence.

This algorithm returns a single occurrence containing the node with which it was

called by MOGO at last position.

32

4.3 Complexity Analysis

The space complexity of storing the Nettree is O (W*m*n). Hence the space

complexity of MOGO is also O(W*m*n) where m is the length of the pattern, n is the

length of the sequence and W is the maximum gap between consecutive letters of the

pattern.

The time complexity of lines 1 and 2 of MOGO is O(W*m*n). Lines 4 to12 of

MOGO are having time complexity of O (W*m*n).Time complexity of OOCL is

O(W*m). Complexity of lines 15 and 16 of MOGO is O (m). Thus complexity of line

3 through 18 is O((W*m*n)*n/m) i.e. O(W*n*n).Thus overall time complexity of

MOGO is O(W*m*n + W*n*n) i.e. O(W*n*(n+m)).

4.4 An Illustration Example

For the sequence S = aatattaat and the pattern P = a[0, 2]t[0, 1]a[0, 3]t and the global

length constraint of [4, 10] , the nettree being created is shown in Figure 4.5.

Figure 4.5: A Nettree

33

In Figure 4.5, solid line and dotted line depicts the parent-child and child-parent

relation respectively. Number_levels calculated from this Nettree is shown in Table

4.1.

Table 4.1: An Instance of Number_levels Array

Array Index 0 1 2 3 4 5 6 7 8

Element 1 1 1 2 2 2 1 1 1

 min_occ and max_occ calculated for each node is shown in Figure 4.6.

Figure 4.6: Nettree with min_occ and max_occ of each node

Here the value before ‘–’ represents value of min_occurrence and the one after ‘–’

represents the value of max_occurrence. For e.g. if its 3- 4, this means value of

min_occurrence is 3 and that of max_occurrence is 4. Amongst all the parents of 8, 6

is having the minimum min_occurrence value. So 6 is the best parent. Now for 6, 4 is

the best parent. Similarly for 4, 1 is the best parent. In this way we get an occurrence

(1, 4, 6, 8). These nodes are then removed from the Nettree. Figure 4.7 shows removal

of nodes and the Nettree recreated after removal of nodes is shown in Figure 4.8.

34

Figure 4.7: Removal of nodes from Nettree

Same operation is then performed on the next leaf node.

Figure 4.8: Updated Nettree

In this case we get (0, 2, 3, 5) as another occurrence. Then these nodes are again

removed from the Nettree and we are left with no other leaf nodes. We get {(1, 4, 6,

8), (0, 2, 3, 5)} as the final solution.

35

CHAPTER – 5

IMPLEMENTATION AND EXPERIMENTAL RESULTS

5.1 Configuration and Architecture

Experiment is performed on machine with configuration Intel(R) Core(TM)2 Duo

CPU T6500@2:10 GHz, 3 GB of RAM and Windows 7 OS. Algorithm has been

implemented in Python 3.2. For interface CGI (Common Gateway Scripting) scripting

has been used. Architecture is shown in Figure 5.1.

Figure 5.1: CGI Architecture

36

The steps involved in the execution of the program are as follows [45]:

1. Provide the URL of the program file (.py extension) to the web browser.

2. Web browser contacts the web server in order to fetch the program file.

3. URL will then be parsed by HTTP server to check whether the file exists. If

file does not exist, server will give an error. If file exists, then python

interpreter will be invoked which runs the script. Script reads the HTTP

request data from stdin and sends back the output of the program to the web

browser via stdout.

5.2 Snapshots

Figure 5.2 shows the first page that we get when we enter the URL of the program file

in the web browser. It is being made user interactive by using the form asking for user

inputs. User needs to input the pattern to be matched, the path of the file where DNA

sequence is stored, minimum and maximum value of global length constraints, option

whether the user wants the output with one-off constraint or without one-off

constraint.

After entering the above information, user needs to click on the calculate button in

order to get the result.

Figure 5.2: First Page

37

Figure 5.3 shows the content of the input file. Input file consists of the DNA

sequence. While reading the DNA Sequence, spaces and newline characters are being

removed by the program.

Figure 5.3: Input File containing the DNA sequence

Figure 5.4 shows the output of the program when wrong pattern is being entered by

the user. Here by mistake user entered the pattern containing character other than in

the alphabet {a, t, c, g}.

Figure 5.4: Output when wrong pattern is entered by the user

38

Figure 5.5 shows the output when user forgets to upload the file containing DNA

sequence. It gives an error “File not found!!!”

Figure 5.5: Output when path of file is not given

Figure 5.6 shows the output of the program when user enters an invalid range of

global length constraints. Invalid range here implies that the minimum value of global

length constraint is greater than the maximum value of global length constraint as

provided by user.

Figure 5.6: Output when invalid range of global length constraints is provided

39

The output of the program for the given pattern and sequence when the user selects

the “Without one-off” option is shown in Figure 5.7.

Figure 5.7: Output without one-off condition

The output of the program for the given pattern and sequence when the user selects

the “with one-off” option is shown in Figure 5.8.

Figure 5.8: Output with one-off condition

40

5.3 Experimental Results

5.3.1 Experiment on Real Data

MOGO has been tested on real world biological data. 8 different segments of the

H1N1 (Swine Flu) virus are downloaded from the website of National Center for

Biotechnology Information [46]. Locus of the sequences and their length are given in

the Table 5.1. Each of these 8 biological sequences has been tested against 4 different

patterns with wildcard gaps given by Min et al. [37]. These 4 patterns are shown in

Table 5.2. Table 5.3 specifies the minimum and maximum length parameters of

global length constraint for each of the pattern given in Table 5.2.

Table 5.1: Biological Sequences

Sequence

Number

Locus Length

S1 CY058563 2286

S2 CY058562 2299

S3 CY058561 2169

S4 CY058556 1720

S5 CY058559 1516

S6 CY058558 1418

S7 CY058557 982

S8 CY058560 844

Table 5.2: Patterns with wildcard gaps

Pattern Number Pattern

P1 a[0,3]t[0,3]a[0,3]t[0,3]a[0,3]t[0,3]a[0,3]t[0,3]a[0,3]t[0,3]a

P2 g[1,5]t[0,6]a[2,7]g[3,9]t[2,5]a[4,9]g[1,8]t[2,9]a

P3 g[1,9]t[1,9]a[1,9] g[1,9]t[1,9]a[1,9] g[1,9]t[1,9]a[1,9]g[1,9]t

P4 g[1,5]t[0,6]a[2,7]g[3,9]t[2,5]a[4,9]g[1,8]t[2,9]a[1,9]g[1,9]t

41

Table 5.3: Global Length Constraints

Pattern Number Minimum Length Maximum Length

P1 11 41

P2 24 57

P3 21 101

P4 27 73

Table 5.4 shows the results obtained by conducting the experiment and its comparison

with the results of the existing algorithms SAIL and HSO as given in [41]. According

to the results, MOGO gives 43.75% better results than the algorithm SAIL and

37.50% better results than the algorithm HSO. Hence MOGO performs better than the

existing algorithms SAIL and HSO by searching more number of occurrences of a

pattern in a sequence.

Table 5.4: Experimental Results

Pattern Algorithm S1 S2 S3 S4 S5 S6 S7 S8

P1 SAIL 13 9 10 15 11 5 3 3

HSO 13 9 10 15 11 5 3 3

MOGO 13 9 10 15 11 5 3 3

P2 SAIL 66 69 59 54 42 39 31 27

HSO 67 71 62 54 42 41 33 28

MOGO 67 73 65 55 44 44 33 32

P3 SAIL 66 69 66 54 45 42 33 28

HSO 64 70 68 52 43 43 33 26

MOGO 68 70 72 52 44 43 32 27

P4 SAIL 49 50 49 40 32 31 24 20

HSO 51 58 52 46 37 30 26 21

MOGO 48 58 54 48 37 35 26 22

42

5.3.2 Experiment on Artificial Data

For the problem taken into consideration, no complete solution has been developed so

far. In this subsection, we analyze the effect of different Constraints on the

Completeness of the Solution. Some of the parameters that affects the completeness

of the solution includes length of the pattern i.e. m and the maximum wildcard gap

between consecutive letters of the pattern i.e. W. For the purpose of this analysis,

artificial data is used as it is having the complete solution for the problem and is

downloaded from [47]. Artificial data is generated by data generator [43]. Input to the

data generator is alphabet Σ, pattern, length of sequence n and maximal support sup

and output is the sequence with exact support value of pattern in sequence under the

one-off condition. So in this way, with artificial data, we have complete solution of

the problem.

A parameter, Accuracy, is used to measure the completeness of the algorithm.

Accuracy is defined as:

where Num_occ is number of occurrences of pattern returned by the algorithm

MOGO and Total_occ is the total number of all possible occurrences of the pattern in

the sequence.

We get Total_occ from the artificial data set. For the same combination of pattern and

sequence in artificial data set, we run the algorithm MOGO in order to obtain

Num_occ .

Figure 5.9 shows the effect of length of the pattern m on accuracy of the algorithm.

Analysis is done for 13 different values of m ranging from 2 to 14. For each value of

m, 10 artificial data sets are considered and the accuracy for that particular value of m

is equal to the average of accuracies corresponding to those 10 artificial data sets.

From the graph, it is clearly visible that with the increase in m i.e. length of the

pattern, accuracy of the algorithm is gradually decreasing.

43

Figure 5.9: Effect of length of the pattern on the accuracy of the algorithm MOGO

Figure 5.10: Effect of maximum wildcard gap on the accuracy of the algorithm

MOGO

44

Figure 5.10 shows the effect of maximum wildcard gap between consecutive letters of

the pattern W on accuracy of the algorithm. Analysis is done for 18 different values of

W ranging from 1 to 18. For each value of W, 10 artificial data sets are considered

and the accuracy for that particular value of W is equal to the average of accuracies

corresponding to those 10 artificial data sets. From the graph, it is clearly visible that

with the increase in W i.e. gap, accuracy of the algorithm is gradually decreasing. As

the gap increases, the probability of overlapping of the possible occurrences becomes

higher. Thus there are more chances of losing the occurrences leading to loss of

accuracy.

45

CHAPTER – 6

CONCLUSION AND FUTURE SCOPE

6.1 Conclusion

In this thesis, we considered the problem of pattern matching with flexible wildcard

gaps between every two consecutive letters of pattern under the one-off constraint.

This problem adds more complexity and flexibility to the traditional pattern matching.

All the potential applications of the mentioned problem have been listed and its

significance in the field of bioinformatics has been studied in detail.

Algorithms for traditional pattern matching have been briefly explained. Different

algorithms based on greedy approaches to solve the problem of pattern matching with

flexible wildcard gaps between every two consecutive letters of pattern under the one-

off constraint have been studied in detail along with their pros and cons. Through this

study, the effect of adding different constraints to the traditional pattern matching

problem and thus leading to difficulty in achieving optimal solution for the problem is

understood. Comparative analysis of these algorithms has been done on the basis of

their complexities, data structure used by them and matching strategies incorporated

in these algorithms.

We then proposed the new algorithm, MOGO (Maximum Occurrences with Global

length constraints and One-off condition) based on the Nettree data structure which

performs better than its peers SAIL and HSO according to theoretical analysis and

experimental results. To show the elaborate working of this algorithm, an illustration

example has been provided. MOGO performs better by giving more number of

pattern matches in a real world biological sequence. MOGO is based on a heuristic

technique and thus doesn’t provide complete solution to the problem. The time and

space complexity of MOGO is O(W*n*(n+m)) and O(W*m*n) respectively, where m

is the length of the pattern, n is the length of the sequence and W is the maximum gap

between consecutive letters of the pattern.

46

6.2 Future Scope

In the future, this work can be extended to allow for some errors while matching the

pattern i.e. approximate pattern matching.

The approach suggested in this thesis can be used to support Multi-pattern matching

with flexible wildcard gaps under one-off condition. Multi-pattern matching refers to

matching more than one pattern simultaneously against the given biological sequence.

Taking into consideration the given constraints, the technique used to match the

patterns against biological sequences is applied on the “Nettree data structure”.

Applying the proposed approach on different data structure might give better result.

Different technique can be applied for pattern matching on the same data structure

used in this work in order to reduce the time complexity and improve the results.

47

REFERENCES

[1] G. Navarro, “Flexible pattern matching,” in Journal of Applied Statistics. Citeseer,

2002.

[2] S. Neuburger, “Pattern matching algorithms: An overview,” 2009.

[3] R. Bhukya and D. Somayajulu, “Exact multiple pattern matching algorithm using

dna sequence and pattern pair.” International Journal of Computer Applications, vol.

17, 2011.

[4] S. Wu and U. Manber, “Fast text searching: allowing errors,” Communications of

the ACM, vol. 35, no. 10, pp. 83–91, 1992.

[5] “Princeton University website, Department of Computer Science,”

http://www.cs.princeton.edu/~rs/AlgsDS07/21PatternMatching.pdf, [Online; accessed

06-May-2014].

[6] M. Zhang, B. Kao, D. W. Cheung, and K. Y. Yip, “Mining periodic patterns with

gap requirement from sequences,” ACM Transactions on Knowledge Discovery from

Data (TKDD), vol. 1, no. 2, p. 7, 2007.

[7] “Course Web Service for University of Washington Computer Science and

Engineering,”http://courses.cs.washington.edu/courses/cse527/00wi/lectures/roottr.pd

f, [Online; accessed 06-May-2014].

[8] “University of Illinois at Chicago website,”

http://www.uic.edu/classes/phys/phys461/phys450/ANJUM04/, [Online; accessed 06-

May-2014].

[9] “Wikipedia,” http://en.wikipedia.org/wiki/Nucleicacidsequence; [Online; accessed

06-May-2014].

http://www.cs.princeton.edu/~rs/AlgsDS07/21PatternMatching.pdf
http://courses.cs.washington.edu/courses/cse527/00wi/lectures/roottr.pdf
http://courses.cs.washington.edu/courses/cse527/00wi/lectures/roottr.pdf
http://www.uic.edu/classes/phys/phys461/phys450/ANJUM04/
http://en.wikipedia.org/wiki/Nucleicacidsequence

48

[10] Y.-I. Chang, J.-R. Chen, and M.-T. Hsu, “A hash trie filter method for

approximate string matching in genomic databases,” Applied Intelligence, vol. 33, no.

1, pp. 21–38, 2010.

[11] C. L. Lam, “Approximate string matching in dna sequences,” Ph.D. dissertation,

The University of Hong Kong, 2003.

[12] “Personal Web pages of students, faculty and staff of Harvard University,”

http://www.people.fas.harvard.edu/~ junliu/sequence_analysis.pdf, [Online; accessed

06 – May-2014]

[13] “A dictionary of computer related terms,”

http://www.techterms.com/definition/wildcard, [Online; accessed 06-May-2014].

[14] N. Pisanti, M. Crochemore, R. Grossi, and M.-F. Sagot, “Bases of motifs for

generating repeated patterns with wild cards,” Computational Biology and

Bioinformatics, IEEE/ACM Transactions on, vol. 2, no. 1, pp. 40–50, 2005.

[15] R. S. Ayg¨un, “S2s: structural-to-syntactic matching similar documents,”

Knowledge and information systems, vol. 16, no. 3, pp. 303–329, 2008.

[16] R. Cole, L.-A. Gottlieb, and M. Lewenstein, “Dictionary matching and indexing

with errors and don’t cares,” in Proceedings of the thirty-sixth annual ACM

symposium on Theory of computing. ACM, 2004, pp. 91–100.

[17] U. Manber and R. Baeza-Yates, “An algorithm for string matching with a

sequence of don’t cares,” Information Processing Letters, vol. 37, no. 3, pp. 133–136,

1991.

[18] T. Akutsu, “Approximate string matching with variable length don’t care

characters,” IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS E

SERIES D, vol. 79, pp. 1353–1354, 1996.

[19] H. Wang, T. Xiang, and X. Hu, “Research on pattern matching with wildcards

and length constraints: Methods and completeness,” 2012.

http://www.techterms.com/definition/wildcard

49

[20] G. Chen, X. Wu, X. Zhu, A. N. Arslan, and Y. He, “Efficient string matching

with wildcards and length constraints,” Knowledge and information systems, vol. 10,

no. 4, pp. 399–419, 2006.

[21] G. Navarro and M. Raffinot, Flexible pattern matching in strings: practical on-

line search algorithms for texts and biological sequences. Cambridge University

Press, 2002.

[22] “Washington State University, School of Electrical Engineering and Computer

Science,” http://www.eecs.wsu.edu/~ananth/CptS317/Lectures/FiniteAutomata.pdf,

[Online; accessed 06-May-2014].

[23] Y. Liu, X. Wu, X. Hu, J. Gao, and C. Wang, “Pattern matching with wildcards

based on multiple suffix trees,” in Granular Computing (GrC), 2012 IEEE

International Conference on. IEEE, 2012, pp. 320– 325.

[24] “University of Central Florida website,”

http://www.cs.ucf.edu/shzhang/Combio11/lec3.pdf, [Online; accessed 06-May-2014].

[25] D. E. Knuth, J. H. Morris, Jr, and V. R. Pratt, “Fast pattern matching in strings,”

SIAM journal on computing, vol. 6, no. 2, pp. 323–350, 1977.

[26] R. Baeza-Yates and G. H. Gonnet, “A new approach to text searching,”

Communications of the ACM, vol. 35, no. 10, pp. 74–82, 1992.

[27] R. S. Boyer and J. S. Moore, “A fast string searching algorithm,”

Communications of the ACM, vol. 20, no. 10, pp. 762–772, 1977.

[28] R. N. Horspool, “Practical fast searching in strings,” Software: Practice and

Experience, vol. 10, no. 6, pp. 501–506, 1980.

[29] M. Crochemore, A. Czumaj, L. Gasieniec, S. Jarominek, T. Lecroq, W.

Plandowski, and W. Rytter, “Speeding up two string-matching algorithms,”

Algorithmica, vol. 12, no. 4-5, pp. 247–267, 1994.

http://www.eecs.wsu.edu/~ananth/CptS317/Lectures/FiniteAutomata.pdf
http://www.cs.ucf.edu/shzhang/Combio11/lec3.pdf

50

[30] G. Navarro and M. Raffinot, “Fast and flexible string matching by combining bit-

parallelism and suffix automata,” Journal of Experimental Algorithmics (JEA), vol. 5,

p. 4, 2000.

[31] C. Allauzen, M. Crochemore, and M. Raffinot, “Efficient experimental string

matching by weak factor recognition*,” in Combinatorial Pattern Matching. Springer,

2006, pp. 51–72.

[32] M. J. Fischer and M. S. Paterson, “String-matching and other products.” DTIC

Document, Tech. Rep., 1974.

[33] S. Muthukrishnan and K. Palem, “Non-standard stringology: Algorithms and

complexity,” in Proceedings of the twenty-sixth annual ACM symposium on Theory

of computing. ACM, 1994, pp. 770–779.

[34] P. Indyk, “Faster algorithms for string matching problems: Matching the

convolution bound,” in Foundations of Computer Science, 1998. Proceedings. 39th

Annual Symposium on. IEEE, 1998, pp. 166–173.

[35] A. Kalai, “Efficient pattern-matching with don’t cares,” in Proceedings of the

thirteenth annual ACM-SIAM symposium on Discrete algorithms. Society for

Industrial and Applied Mathematics, 2002, pp. 655–656.

[36] G. Navarro and M. Raffinot, “Fast and simple character classes and bounded

gaps pattern matching, with applications to protein searching,” Journal of

Computational Biology, vol. 10, no. 6, pp. 903–923, 2003.

[37] F. Min, X. Wu, and Z. Lu, “Pattern matching with independent wildcard gaps,”

in Dependable, Autonomic and Secure Computing, 2009. DASC’09. Eighth IEEE

International Conference on. IEEE, 2009, pp. 194–199.

[38] H. Wang, F. Xie, X. Hu, P. Li, and X. Wu, “Pattern matching with flexible

wildcards and recurring characters,” in Granular Computing (GrC), 2010 IEEE

International Conference on. IEEE, 2010, pp. 782– 786.

51

[39] D. Guo, X.-L. Hong, X.-G. Hu, J. Gao, Y.-L. Liu, G.-Q. Wu, and X. Wu, “A bit-

parallel algorithm for sequential pattern matching with wildcards,” Cybernetics and

Systems, vol. 42, no. 6, pp. 382–401, 2011.

[40] J. Qiang, W. Tian, D. Guo, and X. Wu, “Online pattern matching with

wildcards,” in Granular Computing (GrC), 2012 IEEE International Conference on.

IEEE, 2012, pp. 394–399.

[41] Y. Wu, X. Wu, H. Jiang, and F. Min, “A nettree for approximate maximal pattern

matching with gaps and one-off constraint,” in Tools with Artificial Intelligence

(ICTAI), 2010 22nd IEEE International Conference on, vol. 2. IEEE, 2010, pp. 38–

41.

[42] Y. Wu, X. Wu, F. Min, and Y. Li, “A nettree for pattern matching with flexible

wildcard constraints,” in Information Reuse and Integration (IRI), 2010 IEEE

International Conference on. IEEE, 2010, pp. 109–114.

[43] D. Guo, X. Hu, F. Xie, and X. Wu, “Pattern matching with wildcards and gap-

length constraints based on a centrality-degree graph,” Applied intelligence, vol. 39,

no. 1, pp. 57–74, 2013.

[44] D. He, X. Wu, and X. Zhu, “Sail-approx: an efficient on-line algorithm for

approximate pattern matching with wildcards and length constraints,” in

Bioinformatics and Biomedicine, 2007. BIBM 2007. IEEE International Conference

on. IEEE, 2007, pp. 151–158.

 [45] “tutorialspoint (TP) Simply Easy Learning website”

http://www.tutorialspoint.com/python/python_cgi_programming.htm, [Online;

accessed 06 -May - 2014].

[46] “National center for biotechnology information website,”

http://www.ncbi.nlm.nih.gov/, [Online; accessed 06-December-2013].

[47] “HFUT Data Mining and Intelligent Computing Laboratory Website,”

http://dmic.hfut.edu.cn/HFUT_DMIC/DanGuo/test/, [Online; accessed 10-May-

2014].

http://www.tutorialspoint.com/python/python_cgi_programming.htm
http://www.ncbi.nlm.nih.gov/
http://dmic.hfut.edu.cn/HFUT_DMIC/DanGuo/test/

52

LIST OF PUBLICATIONS

[1] Anu Dahiya and Deepak Garg, “Maximal Pattern Matching with Flexible

Wildcard Gaps and One-off Constraint,” 3
rd

 International Conference on Advances in

Computing, Communications and Informatics, IEEE, 2014. [Accepted]

	Master of Engineering
	June 2014

