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ABSTRACT 

 
 

Deoxyribonucleic acid (DNA) is the storehouse of all information and genetic 

instructions used in the development and functioning of a cell. The amount of DNA 

that is being extracted from the organism is increasing at a faster rate. With the 

considerable increase in the amount of biosequence data, there is need to develop new 

methods to extract knowledge from the data. Pattern matching is a basic operation in 

finding knowledge from large amount of biosequence data. Finding patterns help in 

analyzing the property of a sequence.  Analyzing the DNA sequence can help in 

identifying the genetic diseases.   

Promoter and intron in a DNA sequence does not occur consecutively but with a gap 

of 30-50 characters between them. So Pattern matching with wildcards is of great 

significance in bioinformatics. This thesis focuses on the problem of maximal pattern 

matching with flexible wildcard gaps and length constraints under the one-off 

condition. The problem is to find the maximum number of occurrences of a pattern P 

with user specified wildcard gap between every two consecutive letters of P in a 

biological sequence S under the one-off condition and constraint on the overall length 

of the matching occurrence. To obtain the optimal solution for this problem is 

difficult. For this problem, no complete solution has been developed so far. All 

algorithms are based on greedy approaches. 

 In this work, different existing algorithms for solving the problem of maximal pattern 

matching with flexible wildcard gaps and length constraints under the one-off 

condition have been studied along with their merits and de-merits. These algorithms 

are then compared on the basis of data structure used by them, technique incorporated 

in the algorithm, time and space complexities. 

A heuristic algorithm, MOGO, based on the Nettree data structure has been proposed 

to solve this problem. Theoretical analysis and experimental results demonstrate that 

this algorithm performs better than the existing algorithms in most of the cases when 

tested on real world biological sequences. 
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CHAPTER – 1 

INTRODUCTION 

‘  

 

1.1 Pattern Matching 

In Computer Science, Pattern matching refers to the method of locating the 

occurrences of the pattern in a sequence. Output of pattern matching is the total 

number of occurrences of pattern P in a sequence S and all possible locations of a 

pattern P within a sequence S [1].  

With time, new problems related to pattern matching are being defined. To deal with 

these problems in an efficient manner, several new data structures are being 

introduced and existing data structures are modified. Pattern matching algorithms can 

be distinguished from one another on the basis of the method used for searching the 

occurrence and the method used to achieve optimal time [2]. 

There are two techniques of Pattern Matching [3]: 

 Single pattern Matching – A single pattern is searched for presence in a 

sequence. 

 Multi pattern Matching – More than one patterns are searched simultaneously 

for presence in a sequence. It has high performance and usability than single 

pattern matching. 

Pattern matching algorithms can be broadly classified into two main categories [3]: 

 Exact pattern matching – It refers to finding the exact occurrence of the given 

pattern in the sequence. 

 Approximate pattern matching – Approximate pattern matching allows for 

some errors or mismatches of some characters while finding the occurrence of 

the given pattern in a sequence [4]. Some of the main approaches used in 

approximate pattern matching algorithms are - Dynamic programming 

approach, Bit parallelism approach, Automata approach, Filtering and 

Automation Algorithms. 
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There are two steps involved in pattern matching algorithms [3]: 

 Preprocessing phase – In this phase, the information is being collected for the 

purpose of optimization. 

 Processing Phase – The information collected in preprocessing phase is being 

used to find the occurrences of the pattern in a sequence. 

Pattern matching algorithms can be online or offline. In online algorithms, only 

pattern can be preprocessed while sequence cannot be preprocessed whereas in offline 

algorithms, both sequence and pattern can be preprocessed. 

Some algorithms start searching for the pattern from the left side of the sequence and 

some from the right side of the sequence. Those which start from the left side are 

known as left-optimized algorithms and the ones that start from the right side are 

known as right optimized algorithms [3]. 

Each pattern matching algorithm has its own merits and demerits depending on the 

length of the pattern, length of the sequence and the technique used in that particular 

algorithm. 

Application of Pattern Matching Algorithms includes [5]: 

 Parsers 

 Text processing 

 Speech reorganization 

 Spam filters 

 Linguistic translation 

 Digital libraries 

 Screen scrapers 

 Data compression 

 Word processors 

 Network intrusion detection 

 Web search engines 

 Information retrieval 

 Natural language processing 

 Computational molecular biology 
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 Feature detection in digitized images 

 Computer virus detection 

 

1.2 DNA  

Deoxyribonucleic acid (DNA) is the storehouse of all information and genetic 

instructions used in the development and functioning of a cell. Thus, DNA sequences 

hold the code of life for every living organism. This information is normally encoded 

by the specific sequence of nucleotide bases i.e. adenine, guanine, cytosine and 

thymine (A, G, C, T) [6]. It is the linear order in which these bases are arranged that 

determines the properties of the cell.  

DNA has “double helix” structure made up from two long interwoven strands. Each 

strand is made up of molecules known as nucleotides [7]. 

A nucleotide is made up of: 

 A phosphate group 

 A sugar called deoxyribose 

 A base, which is one of the following: 

 A - Adenine, 

 T - Thymine, 

 C - Cytosine, 

 G - Guanine 

The first two parts are identical in all nucleotides and form the backbone of the DNA 

strand.  

There are five carbon atoms in the sugar molecule. These five carbon atoms are 

represented as C1’, C2’, C3’, C4’, C5’. With 1’ carbon, base is attached and with 3’ 

and 5’ carbons phosphate groups are attached. Sugar molecule is asymmetric and due 

to this asymmetry, it imposes an orientation on the backbone. The two ends that 

results due to this orientation are known as 3’ end and 5’end respectively [7].  
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DNA is double stranded because of base pair complementarily [7]. The two 

complementary base pairs are: 

 A and T 

 C and G 

If one member of a pair is on one strand of DNA and the second member is on 

another strand, and both of them are aligned with each other, then the two can 

hybridize via hydrogen bonds. Hydrogen bonds are nothing but a weak attractive 

force between hydrogen and nitrogen or between hydrogen and oxygen. There are two 

hydrogen bonds between A and T as compared to C and G which is having three 

bonds between them, thus making C-G bonds stronger than A-T bonds [7]. The 

structure of the DNA is shown in Figure 1.1 [8]. 

The unit that is used to measure the length of the DNA is base pairs (bp). 

 

 

Figure 1.1: Structure of DNA 

Sequences are presented by reading from left to right in 5’ to 3’ direction [9]. 

Every gene has coding region and non-coding region. Coding- region is known as 

exon and non- coding region is known as intron. In DNA, promoter region determines 

the initiation of the transcription process of a gene [8]. 
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1.3 Pattern Matching in DNA Sequences 

The amount of DNA that is being extracted from the organism is increasing at a faster 

rate. Because of the considerable increase in the amount of biosequence data, there is 

need to develop new methods to extract knowledge from the data. Pattern matching is 

a basic operation in finding knowledge from large amount of biosequence data. 

Pattern matching is used in computational biology to analyze the data related to 

protein and gene [10]. A particular pattern is searched for in a given DNA sequence. 

In any biological research, the most important step is searching for patterns in 

database. One example of such a database is GENBANK. The human DNA contains 

around 3Gbp [11]. The amount of DNA data being collected from an organism is 

increasing day by day in a non linear manner. With this increase in data, it is 

becoming difficult to obtain essential information from the DNA sequences. Thus 

efficient and fast pattern matching techniques are needed [3]. 

 

1.4 Significance of DNA Sequence Analysis 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2: Central Paradigm of Bioinformatics 

Genetic Information 

Molecular Structure 

Biochemical Functions 

Symptoms 
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Genetic information is represented as one-dimensional but functionality of genes 

depend on the three dimensional structure. Structure determines biochemical 

characteristics of cell. By knowing the biochemical functions, symptoms of each cell 

can be easily known. This is shown in a flowchart in Figure 1.2 [12]. 

DNA is an important part of living things and thus knowledge of DNA sequences 

plays an important role in biological research. In medicine, knowledge of DNA can be 

used to diagnose the genetic diseases and then suggest treatment for the same [9]. 

 

1.5 Pattern Matching with Wildcard Characters  

Wildcard refers to the special character that can be replaced by zero or more 

characters in a string. Wildcards are mostly used in regular expressions, SQL queries, 

Dictionary navigation etc. [13]. Pattern matching with wildcard gaps plays a 

significant role in biological sequence analysis in computational biology. Apart from 

bioinformatics [14], other applications of pattern matching with wildcard include 

information retrieval [15], dictionary query [16] etc.  

The two examples in bioinformatics where pattern matching with wildcard gaps plays 

an important role are as follows: 

1. It is known that in a DNA sequence, common promoter TATA box appears 

after the CAAT box at a gap of 30-50 characters [17, 18]. Hence pattern 

matching with wildcard gaps plays a vital role in analyzing such biological 

sequences.  

2. To the specific locations of DNA, a protein is bind that regulates the 

transcription of the DNA into RNA.  This protein is known as transcription 

factor. There are many transcription factors and can be classified into different 

families. The families are categorized on the basis of strings containing 

wildcards [19]. For instance, a transcription factor named Zinc Finger is 

having the signature: 

CYS¢¢CYS¢¢¢¢¢¢¢¢¢¢¢¢¢HIS¢¢HIS 

where CYS and HIS are the amino acids cysteine and histidine respectively. 
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1.6 Constraints 

Various constraints that can be related to the pattern matching with wildcard gaps are 

as follows: 

 Fixed wildcard gap - Fixed wildcard gap mean that the number of wildcard 

characters that can occur in pattern are fixed. While matching with a string, 

these wildcard characters can be replaced by any character from the alphabet 

under consideration [20]. 

 Variable wildcard gap – Variable wildcard gap means that the number of 

wildcard characters between two consecutive characters can be a range rather 

than a fixed number [20]. 

 Local length constraints - It is the constraint in the form of the range of length 

of wildcard characters between each two consecutive letters of the pattern. 

This gives flexibility to control queries [20]. 

 Global length constraints - Global length constraint is the constraint on the 

overall length of each matching substring of sequence with the given pattern 

[20]. 

 One-off condition- One-off condition means every positional index of a 

character in a sequence can be used at most once while matching with the 

given pattern [20]. Applying One-off condition makes the solution to satisfy 

Apriori property and also removes useless information. 

More constraints lead to difficulty in achieving optimal solutions. 

An example depicting variations of pattern matching is shown in Figure 1.3. 

Figure 1.3a shows the case when there are no wildcard characters in the pattern. In 

this case jump from one character to the next character is consecutive while searching 

for the match. 

Figure 1.3b shows the case when there is fixed wildcard gap in the pattern i.e. number 

of wildcard characters are fixed. In this case there is constant jump from one character 

to the next character while searching for the match. 

Figure 1.3c shows the case when there is variable wildcard gap in the pattern i.e. 

number of wildcard characters between two consecutive characters of the pattern is a 
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range. In this case there is flexible jump from one character to the next character 

depending on the range while searching for the match. 

 

 

Figure 1.3: Example showing different cases of pattern matching 
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CHAPTER – 2 

LITERATURE SURVEY 

   

There exist a numerous algorithms for pattern matching problems. All of these 

algorithms differ in the way they search for the pattern, the data structure used by 

them and time taken by them to give the result. 

 

2.1 Basic Concepts and Data Structure Used 

2.1.1 Bit Parallelism 

The concept of bit parallelism utilizes the ability of parallelism of bit operations in a 

computer word. Multiple values can be accommodated in a single computer word and 

all can be updated in just a single step. By doing that, the number of operations 

performed by an algorithm can be substantially reduced by factor of n where n being 

the number of bits in a computer word [21]. 

2.1.2 Trie 

A tree consists of nodes connected to each other via unidirectional links [21]. Node 

from where the link starts is known as parent node and the node where it ends is 

known as the child node. Node not having any parent is known as the root node and 

nodes not having any child are known as the leaf node. If we attach labels to all the 

links present in the tree, the tree is known as labeled rooted tree. These labels are from 

a particular alphabet ∑, definition of which varies depending on the 

problem/application. 

If we associate this labeled rooted tree to a set of strings, it is known as trie. Structure 

of trie is shown in Figure 2.1. 
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Figure 2.1 Trie for the set of strings, S= {atatc, atcg, atcgac} 

2.1.3 Automata 

Finite automata can be defined as the machine that captures all the possible states and 

transitions while processing the input symbols. 

Depending on the fact whether a machine can have only one state at a particular time 

or can exist in multiple states at the same time, it can be categorized into deterministic 

finite automata and non-deterministic automata respectively [22]. 

If all the transitions are properly labeled from the set of alphabet ∑, automata can 

recognize strings that label path from the initial state to the final state of automata 

[21].  

Example of DFA and NFA has been shown in Figure 2.2 and Figure 2.3 respectively 

to clearly distinguish them.  

 

Figure 2.2: Deterministic Automata 
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Figure 2.3 Non-Deterministic Automata 

In both the figures, 0 is the start state and states with double circle are final states. 

Clearly Figure 2.2 is deterministic automata as for a particular character no state is 

leading to multiple states. Similarly Figure 2.3 is non-deterministic automata as 

character ‘t’ from state 0 is leading to two states – 2 and 6. 

Further automata can be cyclic or acyclic in nature. 

2.1.4 Suffix Tree 

It is similar to trie data structure. It stores all the suffixes of a given string [23]. It is a 

rooted directed tree with the following properties [24]: 

 Number of leaves is equal to the length of the given string. 

 Each edge is labeled. Label must be a substring of the given string. 

 All nodes except root node and leaves should have at least two children. 

 Edges coming out from the same node must not have label beginning with the 

same character. 

 If we traverse the suffix tree from the root node to any leaf node, 

concatenation of the labels of the edges in the path of traversal represents the 

suffix of the given string. 
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Suffix tree is built by considering all the possible suffixes of the string as individual 

words and building a compressed trie for these words. 

Example of suffix tree for the string “banana” is shown in Figure 2.4. All the suffixes 

for the string “banana” are – ‘banana’, ‘anana’, ‘nana’, ‘ana’, ‘na’, ‘a’ and ‘’.  

 

Figure 2.4: Suffix tree for the string “banana” 

 

2.2 Different Matching Strategies 

There are mainly three different ways of searching for pattern in a text. Pattern is 

searched for in a given string using a sliding window. Size of the window is 

equivalent to the size of the pattern. Direction of movement of a window in a string is 

from left to right. Pattern is matched inside a window. Different Approaches along 

with the algorithms that use that particular approach are shown in Figure 2.5 [21]. 
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Figure 2.5: Categorization of Searching Approaches 

 

2.2.1 Prefix-based Approach 

In prefix-based approach forward search is done to find the longest suffix of the 

window that is also the prefix of the pattern [21]. There are three algorithms that fall 

under this category: KMP algorithm, Shift-And algorithm and Shift-or Algorithm. 

KMP algorithm [25] – It uses deterministic finite automata. It updates the longest 

prefix of the pattern that matches the suffix of the string in window after each 

character read. 

Shift-and algorithm [4] and Shift-or algorithm [26] – These algorithms use non-

deterministic finite automata and works on the bit – parallel technique. All the 

possible prefixes of the pattern that can match all the possible suffixes of the string in 

window are being maintained in a set and updated after each character read. 
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2.2.2 Suffix-based Approach 

In suffix-based approach, backward search is done to find the longest suffix of the 

window that is also the suffix of the pattern [21]. By doing this, some characters can 

be avoided from being read, thus improving the performance. The algorithms that use 

this approach are Boyer-Moore algorithm and Horspool algorithm. 

Boyer-Moore (BM) algorithm [27] – It involves computing the three functions. These 

three functions are used for shifting i.e. to determine the safe jumping distance. 

Horspool algorithm [28] – The complexity of BM algorithm was in computing the 

three functions. Horspool changed the third function such that it is more efficient to 

compute it. 

2.2.3 Factor-based Approach  

In Factor-based approach, backward search is done to find the longest suffix of the 

window that is also a factor of the pattern [21]. The complexity of this approach lies 

in identifying the factors of the pattern. The algorithms that use this approach are 

Backward Dawg matching algorithm, Backward Non-deterministic Dawg matching 

algorithm and Backward oracle matching algorithm. 

Backward Dawg Matching (BDM) algorithm [29] – In order to search the factors of 

the pattern, it uses suffix automation. 

Backward Non-deterministic Dawg Matching (BNDM) algorithm [30] - In order to 

search the factors of the pattern, it uses bit parallelism. BNDM is memory efficient 

than BDM. It is basically simulation of non deterministic automation representing 

suffixes of reverse pattern.  

Backward Oracle Matching (BOM) algorithm [31] – It is a slight modification of 

factor based approach. The complexity of the algorithm BDM lies in building the 

suffix automation. The algorithm BOM uses the automation named factor oracle 

which is much simpler as compared to suffix automation. 
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2.3 Variations in Traditional Pattern Matching Problem 

2.3.1 Fixed Wildcard Characters 

The concept of pattern matching with wildcard was first introduced in [32] by Fisher 

and Paterson in which the location of wildcard characters in a pattern is fixed. The 

algorithm given by Fisher and Paterson was deterministic in nature. 

Muthukrishnan and Palem were able to slightly improve the algorithm given by Fisher 

and Paterson by reducing the constant factor [33]. 

Time efficiency of the matching result of the algorithm by Fisher and Paterson was 

improved by Indyk who gave randomized algorithm involving convolutions [34]. A 

new randomized technique was given by Indyk to calculate the Boolean products. 

Time complexity of this algorithm is O (n log n) where n is the length of the string. 

Kalai [35] slightly improved the time efficiency of the matching result of the 

algorithm given by Indyk. Algorithm given by Kalai is also a randomized algorithm 

and involves a single convolution. Time complexity of this algorithm is O (n log m) 

where n is the length of the string and m is the length of the pattern.  

Cole et al. [17] put a restriction on the overall number of wildcard that can occur in a 

pattern while allowing for any number of wildcard characters in between the two 

consecutive characters of the pattern. 

2.3.2 Variable Wildcard Gap 

In [6, 17], user was able to specify the range of wildcard gap between consecutive 

characters of the pattern, but that range was fixed for all the consecutive characters of 

pattern. E.g. A(0,3)T(0,3)A(0,3)C has fixed gap range of (0,3). In [17], Manber and 

Baeza-Yates made use of suffix array data structure to solve the problem, thus 

reducing it to the two-dimensional orthogonal range queries problem. 

Navarro and Raffinot [36] eliminated the restriction of fixed user specified range, thus 

allowing variable user specified gap range. E.g. A(0,1)T(0,3)A was allowed in [36]. 

Navarro and Raffinot proposed two algorithms. The algorithms are not based on 
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regular expression technique, thus making them a bit faster. The first algorithm reads 

each character of string exactly once. The second algorithm can skip some characters 

of string from being read thus making it efficient, but in some cases, it can end up 

reading the characters of strings more than once. So depending on the particular case, 

one of the two algorithms is run. 

Min et al. [37] deals with the same problem definition as in [36] with global length 

constraint added. They proposed the algorithm PAIG. There are three variations of 

this algorithm - PAIG(S), PAIG (RS) and PAIG (RST). PAIG(S) stands for PAIG 

simple. The data structure being used in PAIG is simple look-up tables. PAIG (RS) 

stands for PAIG reduced space. In PAIG (RS), memory sharing mechanism is used 

which reduces the space complexity. PAIG (RST) stands for PAIG reduced space and 

time. In PAIG (RST), an alternative data structure is being employed which reduces 

both time and space complexity. 

2.3.3 One-off Condition 

In addition to the global constraint, the concept of one-off condition was taken into 

consideration in some algorithms.  

SAIL algorithm [20] – It consumes a lot of time for the large pattern length. Three 

main steps involved in this algorithm are: 

1. Location: It searches for the position of the last alphabet of Pattern in 

Sequence by considering the global constraint.  

2. Forward: This phase eliminates all those solutions that do not satisfy local 

constraints and gives the underlying matching positions. 

3. Backward: This phase selects one optimal solution out of all possible 

solutions. 

RSAIL algorithm [38] - Being a heuristic algorithm, SAIL has a problem of left-

optimization as it chooses the left-most letters. It may lose occurrences by getting 

trapped in local optima. SAIL offers the completeness under a restriction that pattern 

should not have recurring characters. 
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To eliminate this problem with SAIL algorithm, RSAIL was proposed. The idea 

behind RSAIL is as follows: 

1. If pattern is not having recurring tail characters, SAIL is called. 

2. If pattern is having recurring tail characters, convert it into a pattern having no 

recurring tail characters and call SAIL. 

Time complexity of RSAIL is same as that of SAIL. 

BPBM algorithm [39] - It is based on bit-parallel technology. Two nondeterministic 

finite state automations (NFAs) are used. One is for identifying all of the pattern 

suffixes, and another one is used to fasten the scanning process by eliminating useless 

sequences. 

PST algorithm [23] - Yingling LiU et al. proposed PST algorithm. PST (parallel 

suffix tree) algorithm is based on multiple suffix trees.  

The algorithm steps are given as: 

Step1: Sequence S is divided into K parts by the cutting process; 

Step2: Suffix tree is constructed for each part; 

Step3: Multiple suffix trees are processed in parallel in order to get the matching 

locations for the pattern. 

PMW algorithm [40] - Jipeng Qiang et al. proposed an algorithm PMW. This 

algorithm relies on the reversed Aho-Corasick automation for matching the sub-

patterns. Horspool algorithm is used to fasten the scanning process by eliminating 

useless sequences. For each sub-pattern, an optimal occurrence is chosen. This 

algorithm is left-optimized. 

HSO algorithm [41] - Wu Y et al. proposed a new data structure Nettree [42]. When 

global length constraints are not considered, PAIG is inefficient because it 

recalculates some local constraints. So a new data structure namely, Nettree was 

introduced and a heuristic algorithm HSO based on this data structure was proposed. 

WOW algorithm [43] – Guo et al. introduced a new data structure named WON-Net 

and proposed a heuristic algorithm WOW based on this data structure. Three 

strategies are mentioned- LMO (Left Most Optimum), RMO (Right Most Optimum) 
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and CMP (Centralization Measure Pruning). One of the three strategies is used 

depending on the calculation of some parameter. 

2.3.4 Approximation Pattern Matching 

SAIL- Approx Algorithm [44] - The algorithm SAIL was extended in [44] to allow 

for some errors i.e. approximate pattern matching. The concept of dynamic 

programming is being applied in this algorithm. 

 

2.4 Comparison of Various Algorithms Involving One-off Condition 

Various algorithms to solve the problem of maximal pattern matching with length 

constraints and one-off condition have been compared in Table 1.1 on the basis of 

data structure, time and space complexities.  

Meaning of various symbols used in the comparison table is as follows: 

n – Length of the sequence 

m – Length of the pattern 

f - Frequency of occurrence of pattern’s last character in the sequence 

W - Maximum gap between consecutive letters of the pattern 

l – Maximum allowed length of the occurrence (Global Length Constraint) 

c - Number of parts into which sequence is divided 

num – total number of occurrences of the pattern in a sequence  

α – Total number of occurrences of sub patterns in a sequence 

A – Sum of lower limits of gap range 

B - Sum of upper limits of gap range 

s – Number of sub patterns in a pattern 

L – Number of characters in the last sub pattern of the pattern 

B/w – Number of machine words to store each bit mask 
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Table 2.1: Comparison of Algorithms 

 

Algorithm Data Structure Time Complexity Space Complexity 

SAIL Search Table O(n+flmW) O(lm) 

RSAIL Search Table O(n + flmW) O(lm) 

PST Suffix Tree O(n+m+num+n/c) O(2n/c) 

BPBM 
Non-deterministic 

Finite automata 

O((Bm+n+f(l+s − 

1))(B/w)) 

O((m+L+2s + 4) (⌊

B/w⌋)) 

PMW 
Aho-Corasick 

Automation 
O(m+n+ f(l+α)) O(m+A) 

HSO Nettree O(Wn(n+m
2
)) O(Wmn) 

WOW WON-Net 

O(Wmn+mn
2
) by 

LMO/RMO 

O(Wmn+mn
3
) by 

CMP 

 

O(mn) 
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CHAPTER – 3 

PROBLEM STATEMENT 

    

3.1 Problem Definition 

Given a biological sequence S, a pattern P along with user defined local and global 

constraints, our goal is to find the maximum number of substrings of sequence S that 

matches the pattern P satisfying the local and global constraints under the one-off 

condition. 

Definition 1: A biological sequence S is defined as 

S= s0s1s2…si…sn-1 

where n is length of the sequence S and si ϵ {a, t, c, g} ∀ i where 0 ≤ i < n. 

Example 1: A sequence S = aaattcgatgggcat is a biological sequence with length, n = 

15. 

Definition 2: A pattern P is defined as  

P = p0 [l0 , u0] p1[l1 , u1] p2[l2 , u2]…[lj-1 , uj-1] pj[lj , uj]…[lm-2 , um-2] pm-1 

where m is length of the pattern P without wildcards and pi ε {a, t, c, g}    0 ≤ j < m. 

Here [lj , uj] is the range of wildcard gap allowed between the pattern characters pj and 

pj+1. lj depicts the lower limit on the number of wildcard characters and uj depicts the 

upper limit on the number of wildcard characters. This wildcard gap specified 

between every two consecutive characters of P is called local constraint. 

Example 2: P = a[0,3]t is a pattern with length i.e. m = 2. Here between the characters 

‘a’ and ‘ t’, 0 to 3 wildcard characters are allowed. 

Definition 3: Global length constraint is defined as the constraint on the overall length 

of the substring of the sequence that matches the pattern. It is defined as [min, max]. 

‘min’ and ‘max’  depicts the minimum and maximum allowable overall length of the 

substring of the sequence that matches the pattern respectively. 
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Definition 4: m and n being the length of the pattern and the sequence respectively, if 

there exists positional indices o0o1o2…om-1 in a sequence S= s0s1s2…sn-1 such that 

characters against those positional indices matches the characters of the pattern P = p0 

[l0 , u0] p1[l1 , u1] p2[l2 , u2] ...[lm-2 , um-2] pm-1, i.e.  

1-m  i  0  wherei  p s ioi   

then (o0o1o2… om-1) is called an occurrence of a pattern in a sequence. 

Example 3: Suppose sequence S = atataaa and pattern P = a[0,3]t[0,5]a. All the 

possible alignments of pattern P with sequence S satisfying the local constraints are 

given in Table 3.1. 

Table 3.1: Different Alignments of Pattern with Sequence in Example 3 

 

 0 1 2 3 4 5 6  

S a t a t a a a  

P a t a     (0,1,2) 

P a t - - a   (0,1,4) 

P a t - - - a  (0,1,5) 

P a t - - - - a (0,1,6) 

P a - - t a   (0,3,4) 

P a - - t - a  (0,3,5) 

P a - - t - - a (0,3,6) 

P   a t a   (2,3,4) 

P   a t - a  (2,3,5) 

P   a t - - a (2,3,6) 

 

So there are total of 10 possible occurrences of pattern P in sequence S : {(0,1,2), 

(0,1,4), (0,1,5), (0,1,6), (0,3,4), (0,3,5), (0,3,6), (2,3,4), (2,3,5), (2,3,6)} 

 

Example 4: Suppose in example 3, global length constraint [3, 5] is given. In this 

case, we are left with only six possible occurrences- {(0,1,2), (0,1,4), (0,3,4), (2,3,4), 

(2,3,5),(2,3,6)} as the occurrences (0,1,5), (0,3,5) are having length 6 and the 

occurrences (0,1,6), (0,3,6) are having length 7 whereas the maximum possible length 

allowed is 5. 
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Definition 5: If every positional index of a character in a sequence can be used at most 

once while matching with a pattern, then such a set of occurrences is said to follow 

the one-off condition. The solution {occ1, occ2…occi} is said to follow the one- off 

condition if and only if 

 = occ …occ  occ i21   

 where i is the total number of occurrences in the solution. 

Example 5: After applying the one-off condition in example 4, the possible solutions 

are: {(0,1,2)}, {(0,3,4)}, {(2,3,4)}, {(0,1,4), (2,3,5)}, {(0,1,4), (2,3,6)} . Since our 

problem is to find the maximum number of possible occurrences, we should get as a 

solution either {(0,1,4), (2,3,5)} or {(0,1,4), (2,3,6)} as both solutions contain 2 

occurrences whereas rest of the possible solutions contain only single occurrence. 

 

3.2 Gap Analysis 

For the problem stated in above section, there is no complete solution developed so 

far. All existing solutions dealing with this problem are based on greedy matching 

strategies. Since this problem is computationally infeasible, it is difficult to develop 

complete matching strategies. The problem of maximal pattern matching with flexible 

wildcard gaps and length constraints under the one-off condition belongs to the 

category of optimization problem. So focus is to improve the matching efficiency as 

well as the quality of solutions. 

 

3.3 Proposed Objective 

The main objectives to address the above stated problem are as follows: 

 To study the various data structures used in pattern matching. 

 To analyze and compare different techniques used in existing algorithms 

designed for the above stated problem. 

 To propose a new algorithm for the problem of maximal pattern matching with 

flexible wildcard gaps and length constraints under the one-off condition. 

 To validate the new algorithm on biological data. 
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3.4 Methodology Used 

To achieve the objectives stated in the above section, following methodology has 

been used: 

 Compare the existing algorithms for the problem on the basis of data structure, 

approach, and time and space complexities. 

 Choose a particular data structure and propose a new technique based on the 

data structure chosen. 

 Implement the new algorithm for maximal pattern matching with flexible 

wildcard gaps and length constraints under the one-off condition. 

 Validate the algorithm on real world biological data 

 Compare the results of new algorithm with the results obtained from the 

existing algorithms on the same dataset. 
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CHAPTER – 4 

ALGORITHM 

   

4.1 Data Structure 

Proposed algorithm is based on the Nettree data structure [42]. Nettree data structure 

is non-linear. Nettree is graph cum tree with one or more roots. Also it is acyclic in 

nature. Nodes can have zero or more parents except those at the root level. Similarly 

nodes can have zero or more children except those at the leaf level.  

Structure of Nettree node is shown in Figure 4.1. 

data 

next 

degree_parents 

degree_children 

parents 

children 

num_root_paths 

 

Figure 4.1: Structure of Nettree Node 

There are seven fields in the structure of Nettree nodes: 

 data contains the position of the character in the sequence. 

 next is the pointer that points to the immediate next node of the node. 

 degree_parents represents the number of parents of the node. 

 degree_children represents the number of children of the node. 

 parents is a pointer array that contain pointers to all the parents of the node. 

This array is of size ‘degree_parents’. 

 children is a pointer array that contain pointers to all the children of the node. 

This array is of size ‘degree_children’. 
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 num_root_paths represent the total number of paths from this node to the root 

level nodes. 

Structure of Nettree level is shown in Figure 4.2. Total number of levels in Nettree is 

equal to total number of subpatterns in a given pattern. Here subpattern refers to the 

subpatterns that are separated by wildcard gaps in a pattern. For instance, if pattern is 

a[0,3]t[2,3]c, then there are three subpatterns of this pattern i.e. ‘a’, ‘t’ and ‘c’. There 

can be any number of nodes at each level of Nettree depending on the sequence and 

pattern. The very first level is known as root level and the last level is known as leaf 

level. The concept of roots and leafs is similar to that of a tree. 

Tail 

Head 

 

Figure 4.2: Structure of Nettree Level 

There are two members in Nettree Level: 

 Head- First node of the level is pointed by this pointer. 

 Tail – Last node of the level is pointed by this pointer. 

From one particular node at leaf level to a particular node at root level, there can be 

multiple paths. 

Num_root_paths field of a Nettree node contains number of all possible paths from 

that node to the nodes at root level. In order to calculate num_root_paths, we start 

from the root level. For all the nodes at root level, value of num_root_paths is equal to 

one. For all other levels, value of num_root_paths is equal to the sum of 

num_root_paths of all the parents of that node. 

If we will sum the num_root_paths of all the nodes at leaf level, we will get the total 

number of possible paths we can get by traversing from leaf level to root level in 

Nettree.  

Total number of possible paths depicts the total number of occurrences of the pattern 

in a sequence. 
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While creating Nettree, local constraints are taken care of i.e. the occurrences that we 

get after traversing Nettree satisfies the local constraints. However, occurrences 

outputted by traversing Nettree do not satisfy global constraints and the one-off 

condition. It just provides the solution for the problem of pattern matching with 

independent wildcard gaps. 

If we traverse the Nettree from root to leaf level, we get position of all occurrences of 

the pattern in a sequence. 

Nettree is being created according to the sequence S and Pattern P. Sequence S is 

scanned from left to right. Nodes and relation between nodes will be created 

according to the following rules: 

Rule 1. Creation of nodes of root level 

If si = p0, create and add node to the tail of the level one. In case it is the first node of 

the level, make head point to this node. 

Rule 2. Creation of nodes other than root level 

If si = pj where j != 0 and the distance between i
th

 and the j
th

 level nodes is in 

accordance to local constraints, create and add node to the tail of the j + 1
th

 level. 

Rule 3. Creating relation between nodes of different levels 

If the distance between the node created at a level and the nodes at one level up 

satisfies the local constraints, create a parent-child relation between nodes. 

 

Example:  

Let sequence be atataaa and pattern be a[0,3]t[0,5]a 

Step by step construction of Nettree for this problem is shown in Figure 4.3. Final 

Nettree created is shown in Figure 4.4. 
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          a) b) c) 

 

 

                                

d) e) f) 

 

Figure 4.3: Step-by-Step Creation of Nettree 
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Figure 4.4: Final Nettree 

 

On traversing this Nettree, from the leaf level up to the root level, we get all the 

possible paths. 

In this example, total number of paths=10 

And those paths are: 

0 1 2 2 3 4 0 3 4 0 1 4 2 3 5 0 3 5 0 1 5 2 3 6 0 3 6 0 1 6 

 

Complexity 

Time and space complexity of creating Nettree data structure according to the given 

sequence and pattern is O(W*m*n) and O(W*m*n) where m is the length of the 

pattern, n is the length of the sequence and W is the maximum gap between 

consecutive letters of the pattern. Maximum depth of Nettree is m. Also there cannot 

be more than n nodes at one level as length of sequence is n. Since maximal gap is W, 

so for each node, there can be maximum of W parents possible i.e. next W positions 

in a sequence. Hence time and space complexity of Nettree is O(W*m*n) and 

O(W*m*n) respectively. 
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4.2 Algorithm Description 

Definition 6: number_levels[node.data] contains number of different levels at which 

the positional index of node i.e. node.data is occurring. 

Definition 7: Considering the paths from a particular node ‘nod’ to the root level, the 

sum of the value of the number_levels of the nodes in the path that contains less 

number of those nodes that occur at various different levels as compared to other 

possible paths is called min_occurence of the node ‘nod’. 

Property 1: For a node except those at the root level, the minimum value of the 

min_occurence amongst all the parents of the node plus the number_levels value of 

the node itself is known as min_occurrence of the node. For a node at root level, 

min_occurence is the value of the number_levels of that particular node. 

node.min_occurence = min(node.parents[i].min_occurrence) + number_levels[node.data]   

where 1 ≤ i ≤ node.num_parents 

Definition 8: Considering the paths from a particular node ‘nod’ to the root level, the 

sum of the value of the number_levels of the nodes in the path that contains more 

number of those nodes that occur at various different levels as compared to other 

possible paths is called max_occurence of the node ‘nod’. 

Property 2: For a node except those at the root level, the maximum value of the 

max_occurence amongst all the parents of the node plus the number_levels value of 

the node itself is known as max_occurrence of the node. For a node at root level, 

max_occurence is the value of the number_levels of that particular node.  

node.max_occurence = max(node.parents[i].max_occurrence) + number_levels[node.data]   

where 1 ≤ i ≤ node.num_parents 

Algorithm 1: MOGO 

Input: Sequence S, pattern P and global constraint [min, max] 

Output: Set of occurrences 
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Method: 

1: Build the Nettree  for the sequence S and the pattern P 

2: Remove nodes having no possible path to any leaf from the Nettree 

3: for l ϵ number of leaves at m
th

 level down to 1 step -1 

4:   for nod ϵ all nodes of the Nettree 

5:    Number_levels[nod.data]+=1 

6:   end for 

7:   for nod ϵ all nodes of the Nettree 

8:    calculate nod.min_occurrence and nod.max_occurrence 

according to    property 1 and  property 2 

9:   end for 

10:   for nod ϵ all nodes of the Nettree 

11:    calculate the possible roots for nod satisfying global constraints 

12:   end for 

13:   if l satisfies global constraints 

14:    occ = OOCL(l, Nettree) 

15:    solution=solution U occ 

16:    Nettree = Nettree – occ 

17:   end if 

18: end for 

19: return solution 

 

Algorithm 2: OOCL 

Input: Nettree, Leaf l 

Output: An occurrence containing Leaf l at last position 

Method: 

1: best_parent = l.parent[l.num_parents] 

2: for r ϵ l.num_parents down to 1 step -1 

3:   if l.parent[r] satisfies global constraints 

4:    if l.parent[r].min_occurrence < best_parent.min_occurrence 

5:     best_parent = l.parent[r] 

6:    elif l.parent[r].min_occurrence == best_parent.min_occurrence 

7:     if  l.parent[r].max_occurrence <= 

best_parent.max_occurrence 
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8:      best_parent = l.parent[r] 

9:     end if 

10:    end if 

11:   end if 

12: end for 

13: if best_parent.degree_parents != 0 

14:   OOCL(Nettree, best_parent) 

15: end if 

16: return occurrence 

MOGO (Maximum Occurrences with Global length constraints and One-off 

condition) 

In line 1, Nettree is being created according to the sequence S and Pattern P. In line 2, 

nodes that cannot be a part of any path from leaf to the root are being removed. For 

the purpose of removing such nodes, each node of the constructed Nettree is 

inspected. From lines 3 to 18, for each node - number_levels, possible roots satisfying 

global constraint, min_occurrence and max_occurrence are being calculated and 

OOCL is called iteratively for each leaf satisfying the global constraint in order to get 

an optimal occurrence containing that leaf. In lines 4 to 6, nettree_levels is calculated. 

In lines 7 to 9, min_occurrences and max_occurrences for each node is calculated. In 

lines 10 to 12, for all nodes, all the possible root nodes satisfying the global 

constraints that can be reached from node in consideration are being calculated. In 

line 13, node is checked whether it is satisfying global constraints. If it satisfies global 

constraints, in line 14 the algorithm OOCL is called for that node. 

OOCL (Optimal Occurrences Containing Leaf) 

This algorithm works in a recursive manner by finding the best parent of the node for 

which it is called till it reaches the root level. It chooses the parent having minimum 

value of min_occurrence as the best parent. In case of clash of the minimum value of 

min_occurrence, it chooses the one having the minimum value of max_occurrence. 

This algorithm returns a single occurrence containing the node with which it was 

called by MOGO at last position.  
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4.3 Complexity Analysis 

The space complexity of storing the Nettree is O (W*m*n). Hence the space 

complexity of MOGO is also O(W*m*n) where m is the length of the pattern, n is the 

length of  the sequence and W is the maximum gap between consecutive letters of the 

pattern.  

The time complexity of lines 1 and 2 of MOGO is O(W*m*n). Lines 4 to12 of 

MOGO are having time complexity of O (W*m*n).Time complexity of OOCL is 

O(W*m). Complexity of lines 15 and 16 of MOGO is O (m). Thus complexity of line 

3 through 18 is O( (W*m*n)*n/m) i.e. O(W*n*n).Thus overall time complexity of 

MOGO is O(W*m*n + W*n*n) i.e. O(W*n*(n+m)). 

 

4.4 An Illustration Example 

For the sequence S = aatattaat and the pattern P = a[0, 2]t[0, 1]a[0, 3]t and the global 

length constraint of [4, 10] , the nettree being created is shown in Figure 4.5. 

 

Figure 4.5: A Nettree 



33 
 

In Figure 4.5, solid line and dotted line depicts the parent-child and child-parent 

relation respectively. Number_levels calculated from this Nettree is shown in Table 

4.1. 

Table 4.1: An Instance of Number_levels Array 

Array Index 0 1 2 3 4 5 6 7 8 

Element 1 1 1 2 2 2 1 1 1 

 

 min_occ and max_occ calculated for each node is shown in Figure 4.6. 

 

Figure 4.6: Nettree with min_occ and max_occ of each node 

Here the value before ‘–’ represents value of min_occurrence and the one after ‘–’ 

represents the value of max_occurrence. For e.g. if its 3- 4, this means value of 

min_occurrence is 3 and that of max_occurrence is 4. Amongst all the parents of 8, 6 

is having the minimum min_occurrence value. So 6 is the best parent. Now for 6, 4 is 

the best parent. Similarly for 4, 1 is the best parent. In this way we get an occurrence 

(1, 4, 6, 8). These nodes are then removed from the Nettree. Figure 4.7 shows removal 

of nodes and the Nettree recreated after removal of nodes is shown in Figure 4.8. 
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Figure 4.7: Removal of nodes from Nettree 

Same operation is then performed on the next leaf node. 

 

Figure 4.8: Updated Nettree 

In this case we get (0, 2, 3, 5) as another occurrence. Then these nodes are again 

removed from the Nettree and we are left with no other leaf nodes. We get {(1, 4, 6, 

8), (0, 2, 3, 5)} as the final solution. 
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CHAPTER – 5 

IMPLEMENTATION AND EXPERIMENTAL RESULTS 

   

5.1 Configuration and Architecture 

Experiment is performed on machine with configuration Intel(R) Core(TM)2 Duo 

CPU T6500@2:10 GHz, 3 GB of RAM and Windows 7 OS. Algorithm has been 

implemented in Python 3.2. For interface CGI (Common Gateway Scripting) scripting 

has been used. Architecture is shown in Figure 5.1. 

 

Figure 5.1: CGI Architecture 
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The steps involved in the execution of the program are as follows [45]: 

1. Provide the URL of the program file (.py extension) to the web browser. 

2. Web browser contacts the web server in order to fetch the program file. 

3. URL will then be parsed by HTTP server to check whether the file exists. If 

file does not exist, server will give an error. If file exists, then python 

interpreter will be invoked which runs the script. Script reads the HTTP 

request data from stdin and sends back the output of the program to the web 

browser via stdout. 

  

5.2 Snapshots 

Figure 5.2 shows the first page that we get when we enter the URL of the program file 

in the web browser. It is being made user interactive by using the form asking for user 

inputs. User needs to input the pattern to be matched, the path of the file where DNA 

sequence is stored, minimum and maximum value of global length constraints, option 

whether the user wants the output with one-off constraint or without one-off 

constraint. 

After entering the above information, user needs to click on the calculate button in 

order to get the result. 

 

Figure 5.2: First Page 
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Figure 5.3 shows the content of the input file. Input file consists of the DNA 

sequence. While reading the DNA Sequence, spaces and newline characters are being 

removed by the program.  

 

 

Figure 5.3: Input File containing the DNA sequence 

 

Figure 5.4 shows the output of the program when wrong pattern is being entered by 

the user. Here by mistake user entered the pattern containing character other than in 

the alphabet {a, t, c, g}. 

 

 

Figure 5.4: Output when wrong pattern is entered by the user 
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Figure 5.5 shows the output when user forgets to upload the file containing DNA 

sequence. It gives an error “File not found!!!” 

 

 

Figure 5.5: Output when path of file is not given 

 

Figure 5.6 shows the output of the program when user enters an invalid range of 

global length constraints. Invalid range here implies that the minimum value of global 

length constraint is greater than the maximum value of global length constraint as 

provided by user. 

 

 

Figure 5.6: Output when invalid range of global length constraints is provided 
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The output of the program for the given pattern and sequence when the user selects 

the “Without one-off” option is shown in Figure 5.7. 

 

 

Figure 5.7: Output without one-off condition 

 

The output of the program for the given pattern and sequence when the user selects 

the “with one-off” option is shown in Figure 5.8. 

 

 

Figure 5.8: Output with one-off condition 
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5.3 Experimental Results 

5.3.1 Experiment on Real Data 

MOGO has been tested on real world biological data. 8 different segments of the 

H1N1 (Swine Flu) virus are downloaded from the website of National Center for 

Biotechnology Information [46]. Locus of the sequences and their length are given in 

the Table 5.1. Each of these 8 biological sequences has been tested against 4 different 

patterns with wildcard gaps given by Min et al. [37]. These 4 patterns are shown in 

Table 5.2. Table 5.3 specifies the minimum and maximum length parameters of 

global length constraint for each of the pattern given in Table 5.2.  

 

Table 5.1: Biological Sequences 

Sequence 

Number 

Locus Length 

S1 CY058563 2286 

S2 CY058562 2299 

S3 CY058561 2169 

S4 CY058556 1720 

S5 CY058559 1516 

S6 CY058558 1418 

S7 CY058557 982 

S8 CY058560 844 

 

 

Table 5.2: Patterns with wildcard gaps 

 

Pattern Number Pattern 

P1 a[0,3]t[0,3]a[0,3]t[0,3]a[0,3]t[0,3]a[0,3]t[0,3]a[0,3]t[0,3]a 

P2 g[1,5]t[0,6]a[2,7]g[3,9]t[2,5]a[4,9]g[1,8]t[2,9]a 

P3 g[1,9]t[1,9]a[1,9] g[1,9]t[1,9]a[1,9] g[1,9]t[1,9]a[1,9]g[1,9]t 

P4 g[1,5]t[0,6]a[2,7]g[3,9]t[2,5]a[4,9]g[1,8]t[2,9]a[1,9]g[1,9]t 
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Table 5.3: Global Length Constraints 

Pattern Number Minimum Length Maximum Length 

P1 11 41 

P2 24 57 

P3 21 101 

P4 27 73 

 

Table 5.4 shows the results obtained by conducting the experiment and its comparison 

with the results of the existing algorithms SAIL and HSO as given in [41]. According 

to the results, MOGO gives 43.75% better results than the algorithm SAIL and 

37.50% better results than the algorithm HSO. Hence MOGO performs better than the 

existing algorithms SAIL and HSO by searching more number of occurrences of a 

pattern in a sequence. 

Table 5.4: Experimental Results 

 

Pattern Algorithm S1 S2 S3 S4 S5 S6 S7 S8 

P1 SAIL 13 9 10 15 11 5 3 3 

HSO 13 9 10 15 11 5 3 3 

MOGO 13 9 10 15 11 5 3 3 

P2 SAIL 66 69 59 54 42 39 31 27 

HSO 67 71 62 54 42 41 33 28 

MOGO 67 73 65 55 44 44 33 32 

P3 SAIL 66 69 66 54 45 42 33 28 

HSO 64 70 68 52 43 43 33 26 

MOGO 68 70 72 52 44 43 32 27 

P4 SAIL 49 50 49 40 32 31 24 20 

HSO 51 58 52 46 37 30 26 21 

MOGO 48 58 54 48 37 35 26 22 
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5.3.2 Experiment on Artificial Data 

For the problem taken into consideration, no complete solution has been developed so 

far. In this subsection, we analyze the effect of different Constraints on the 

Completeness of the Solution. Some of the parameters that affects the completeness 

of the solution includes length of the pattern i.e. m and the maximum wildcard gap 

between consecutive letters of the pattern i.e. W. For the purpose of this analysis, 

artificial data is used as it is having the complete solution for the problem and is 

downloaded from [47]. Artificial data is generated by data generator [43]. Input to the 

data generator is alphabet Σ, pattern, length of sequence n and maximal support sup 

and output is the sequence with exact support value of pattern in sequence under the 

one-off condition. So in this way, with artificial data, we have complete solution of 

the problem. 

A parameter, Accuracy, is used to measure the completeness of the algorithm. 

Accuracy is defined as: 

         
       

         
 

where Num_occ is number of occurrences of pattern returned by the algorithm 

MOGO and Total_occ is the total number of all possible occurrences of the pattern in 

the sequence. 

We get Total_occ from the artificial data set. For the same combination of pattern and 

sequence in artificial data set, we run the algorithm MOGO in order to obtain 

Num_occ . 

Figure 5.9 shows the effect of length of the pattern m on accuracy of the algorithm. 

Analysis is done for 13 different values of m ranging from 2 to 14. For each value of 

m, 10 artificial data sets are considered and the accuracy for that particular value of m 

is equal to the average of accuracies corresponding to those 10 artificial data sets. 

From the graph, it is clearly visible that with the increase in m i.e. length of the 

pattern, accuracy of the algorithm is gradually decreasing. 
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Figure 5.9: Effect of length of the pattern on the accuracy of the algorithm MOGO 

 

 

Figure 5.10: Effect of maximum wildcard gap on the accuracy of the algorithm 

MOGO 
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Figure 5.10 shows the effect of maximum wildcard gap between consecutive letters of 

the pattern W on accuracy of the algorithm. Analysis is done for 18 different values of 

W ranging from 1 to 18. For each value of W, 10 artificial data sets are considered 

and the accuracy for that particular value of W is equal to the average of accuracies 

corresponding to those 10 artificial data sets. From the graph, it is clearly visible that 

with the increase in W i.e. gap, accuracy of the algorithm is gradually decreasing. As 

the gap increases, the probability of overlapping of the possible occurrences becomes 

higher. Thus there are more chances of losing the occurrences leading to loss of 

accuracy. 
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CHAPTER – 6 

CONCLUSION AND FUTURE SCOPE 

   

6.1 Conclusion 

In this thesis, we considered the problem of pattern matching with flexible wildcard 

gaps between every two consecutive letters of pattern under the one-off constraint. 

This problem adds more complexity and flexibility to the traditional pattern matching. 

All the potential applications of the mentioned problem have been listed and its 

significance in the field of bioinformatics has been studied in detail.  

Algorithms for traditional pattern matching have been briefly explained. Different 

algorithms based on greedy approaches to solve the problem of pattern matching with 

flexible wildcard gaps between every two consecutive letters of pattern under the one-

off constraint have been studied in detail along with their pros and cons. Through this 

study, the effect of adding different constraints to the traditional pattern matching 

problem and thus leading to difficulty in achieving optimal solution for the problem is 

understood. Comparative analysis of these algorithms has been done on the basis of 

their complexities, data structure used by them and matching strategies incorporated 

in these algorithms.  

We then proposed the new algorithm, MOGO (Maximum Occurrences with Global 

length constraints and One-off condition) based on the Nettree data structure which 

performs better than its peers SAIL and HSO according to theoretical analysis and 

experimental results. To show the elaborate working of this algorithm, an illustration 

example has been provided. MOGO performs better by giving more number of 

pattern matches in a real world biological sequence. MOGO is based on a heuristic 

technique and thus doesn’t provide complete solution to the problem. The time and 

space complexity of MOGO is O(W*n*(n+m)) and O(W*m*n) respectively, where m 

is the length of the pattern, n is the length of  the sequence and W is the maximum gap 

between consecutive letters of the pattern. 
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6.2 Future Scope 

In the future, this work can be extended to allow for some errors while matching the 

pattern i.e. approximate pattern matching. 

The approach suggested in this thesis can be used to support Multi-pattern matching 

with flexible wildcard gaps under one-off condition. Multi-pattern matching refers to 

matching more than one pattern simultaneously against the given biological sequence. 

Taking into consideration the given constraints, the technique used to match the 

patterns against biological sequences is applied on the “Nettree data structure”. 

Applying the proposed approach on different data structure might give better result. 

Different technique can be applied for pattern matching on the same data structure 

used in this work in order to reduce the time complexity and improve the results. 
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